Skip to content

Commit

Permalink
Expose internal functions for reading sparse matrices from HDF5. (#86)
Browse files Browse the repository at this point in the history
For dense matrices, the user is responsible for specifying whether the
transposition was performed; for sparse matrices, the user specifies the
dimension extents and CSC/CSR layouts. This allows creation of a ScranMatrix
from HDF5 files that are not in the typical formats (i.e., H5AD/10X).
  • Loading branch information
LTLA authored May 1, 2024
1 parent 12783ed commit 762a2c5
Show file tree
Hide file tree
Showing 5 changed files with 351 additions and 139 deletions.
1 change: 1 addition & 0 deletions js/index.js
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ export { initialize, terminate, wasmArraySpace, heapSize, maximumThreads } from
export { createUint8WasmArray, createInt32WasmArray, createFloat64WasmArray, free } from "./utils.js";

export * from "./initializeSparseMatrix.js";
export * from "./initializeSparseMatrixFromHdf5.js";
export * from "./rds.js";
export * from "./file.js";

Expand Down
97 changes: 0 additions & 97 deletions js/initializeSparseMatrix.js
Original file line number Diff line number Diff line change
Expand Up @@ -216,103 +216,6 @@ export function extractMatrixMarketDimensions(x, { compressed = null } = {}) {
return output;
}

/**
* Initialize a layered sparse matrix from a HDF5 file.
*
* @param {string} file Path to the HDF5 file.
* For browsers, the file should have been saved to the virtual filesystem.
* @param {string} name Name of the dataset inside the file.
* This can be a HDF5 Dataset for dense matrices or a HDF5 Group for sparse matrices.
* For the latter, both H5AD and 10X-style sparse formats are supported.
* @param {object} [options={}] - Optional parameters.
* @param {boolean} [options.forceInteger=true] - Whether to coerce all elements to integers via truncation.
* @param {boolean} [options.layered=true] - Whether to create a layered sparse matrix, see [**tatami_layered**](https://github.com/tatami-inc/tatami_layered) for more details.
* Only used if the relevant HDF5 dataset contains an integer type and/or `forceInteger = true`.
* Setting to `true` assumes that the matrix contains only non-negative integers.
* @param {?(Array|TypedArray|Int32WasmArray)} [options.subsetRow=null] - Row indices to extract.
* All indices must be non-negative integers less than the number of rows in the sparse matrix.
* @param {?(Array|TypedArray|Int32WasmArray)} [options.subsetColumn=null] - Column indices to extract.
* All indices must be non-negative integers less than the number of columns in the sparse matrix.
*
* @return {ScranMatrix} Matrix containing sparse data.
*/
export function initializeSparseMatrixFromHdf5(file, name, { forceInteger = true, layered = true, subsetRow = null, subsetColumn = null } = {}) {
var ids = null;
var output;
let wasm_row, wasm_col;

try {
let use_row_subset = (subsetRow !== null);
let row_offset = 0, row_length = 0;
if (use_row_subset) {
wasm_row = utils.wasmifyArray(subsetRow, "Int32WasmArray");
row_offset = wasm_row.offset;
row_length = wasm_row.length;
}

let use_col_subset = (subsetColumn !== null);
let col_offset = 0, col_length = 0;
if (use_col_subset) {
wasm_col = utils.wasmifyArray(subsetColumn, "Int32WasmArray");
col_offset = wasm_col.offset;
col_length = wasm_col.length;
}

output = gc.call(
module => module.read_hdf5_matrix(file, name, forceInteger, layered, use_row_subset, row_offset, row_length, use_col_subset, col_offset, col_length),
ScranMatrix
);

} catch(e) {
utils.free(output);
throw e;
} finally {
utils.free(wasm_row);
utils.free(wasm_col);
}

return output;
}

/**
* Extract the format and dimensions of a HDF5 matrix.
*
* @param {string} file Path to the HDF5 file.
* For browsers, the file should have been saved to the virtual filesystem.
* @param {string} name Name of the dataset inside the file.
* This can be a HDF5 Dataset for dense matrices or a HDF5 Group for sparse matrices.
* For the latter, both H5AD and 10X-style sparse formats are supported.
*
* @return {object} An object containing:
* - `rows`, the number of rows in the matrix.
* - `columns`, the number of columns.
* - `format`, whether the matrix is dense, CSR or CSC.
* - `integer`, whether the matrix data is stored as integers or doubles.
*/
export function extractHdf5MatrixDetails(file, name) {
let output = {};
let arr = utils.createInt32WasmArray(5);
try {
wasm.call(module => module.extract_hdf5_matrix_details(file, name, arr.offset));

let vals = arr.array();
if (vals[0] > 0) {
output.format = "dense";
} else if (vals[1] > 0) {
output.format = "csc";
} else {
output.format = "csr";
}

output.rows = vals[2];
output.columns = vals[3];
output.integer = vals[4] > 0;
} finally {
arr.free();
}
return output;
}

/**
* Initialize a dense matrix from a column-major array.
*
Expand Down
171 changes: 171 additions & 0 deletions js/initializeSparseMatrixFromHdf5.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
import * as gc from "./gc.js";
import * as wasm from "./wasm.js";
import * as utils from "./utils.js";
import { ScranMatrix } from "./ScranMatrix.js";

/**
* Initialize a (potentially layered) sparse matrix from a HDF5 file,
* either from a dense array (via {@linkcode initializeSparseMatrixFromHdf5DenseArray})
* or a group containing a compressed sparse matrix (via {@linkcode initializeSparseMatrixFromHdf5SparseMatrix}).
*
* @param {string} file Path to the HDF5 file.
* For browsers, the file should have been saved to the virtual filesystem.
* @param {string} name Name of the matrix inside the file.
* This can be a HDF5 Dataset for dense matrices or a HDF5 Group for sparse matrices.
* For the latter, both H5AD and 10X-style sparse formats are supported.
* @param {object} [options={}] - Optional parameters.
* @param {boolean} [options.forceInteger=true] - Whether to coerce all elements to integers via truncation.
* @param {boolean} [options.layered=true] - Whether to create a layered sparse matrix, see [**tatami_layered**](https://github.com/tatami-inc/tatami_layered) for more details.
* Only used if the relevant HDF5 dataset contains an integer type and/or `forceInteger = true`.
* Setting to `true` assumes that the matrix contains only non-negative integers.
* @param {?(Array|TypedArray|Int32WasmArray)} [options.subsetRow=null] - Row indices to extract.
* All indices must be non-negative integers less than the number of rows in the sparse matrix.
* @param {?(Array|TypedArray|Int32WasmArray)} [options.subsetColumn=null] - Column indices to extract.
* All indices must be non-negative integers less than the number of columns in the sparse matrix.
*
* @return {ScranMatrix} Matrix containing sparse data.
*/
export function initializeSparseMatrixFromHdf5(file, name, { forceInteger = true, layered = true, subsetRow = null, subsetColumn = null } = {}) {
const details = extractHdf5MatrixDetails(file, name);
if (details.format == "dense") {
// Setting transposed = true as all known dense matrices store the cells in the first dimension and the genes in the last dimension.
return initializeSparseMatrixFromHdf5DenseArray(file, name, { transposed: true, forceInteger, layered, subsetRow, subsetColumn });
} else {
return initializeSparseMatrixFromHdf5SparseMatrix(file, name, details.rows, details.columns, details.format == "csc", { forceInteger, layered, subsetRow, subsetColumn });
}
}

function prepare_hdf5_matrix_subset(subsetRow, subsetColumn, fun) {
var output;
let wasm_row, wasm_col;

try {
let use_row_subset = (subsetRow !== null);
let row_offset = 0, row_length = 0;
if (use_row_subset) {
wasm_row = utils.wasmifyArray(subsetRow, "Int32WasmArray");
row_offset = wasm_row.offset;
row_length = wasm_row.length;
}

let use_col_subset = (subsetColumn !== null);
let col_offset = 0, col_length = 0;
if (use_col_subset) {
wasm_col = utils.wasmifyArray(subsetColumn, "Int32WasmArray");
col_offset = wasm_col.offset;
col_length = wasm_col.length;
}

output = fun(use_row_subset, row_offset, row_length, use_col_subset, col_offset, col_length);

} finally {
utils.free(wasm_row);
utils.free(wasm_col);
}

return output;
}

/**
* Initialize a (potentially layered) sparse matrix from a two-dimensional HDF5 dataset.
*
* @param {string} file Path to the HDF5 file.
* For browsers, the file should have been saved to the virtual filesystem.
* @param {string} name Name of the dataset inside the file.
* @param {object} [options={}] - Optional parameters.
* @param {boolean} [options.transposed=false] - Whether the matrix is transposed inside the file, i.e., the last dimension represents the rows.
* @param {boolean} [options.forceInteger=false] - Whether to coerce all elements to integers via truncation.
* @param {boolean} [options.layered=true] - Whether to create a layered sparse matrix, see [**tatami_layered**](https://github.com/tatami-inc/tatami_layered) for more details.
* Only used if the relevant HDF5 dataset contains an integer type and/or `forceInteger = true`.
* Setting to `true` assumes that the matrix contains only non-negative integers.
* @param {?(Array|TypedArray|Int32WasmArray)} [options.subsetRow=null] - Row indices to extract.
* All indices must be non-negative integers less than the number of rows in the sparse matrix.
* @param {?(Array|TypedArray|Int32WasmArray)} [options.subsetColumn=null] - Column indices to extract.
* All indices must be non-negative integers less than the number of columns in the sparse matrix.
*
* @return {ScranMatrix} Matrix containing sparse data.
*/
export function initializeSparseMatrixFromHdf5DenseArray(file, name, { transposed = false, forceInteger = false, layered = true, subsetRow = null, subsetColumn = null } = {}) {
return prepare_hdf5_matrix_subset(subsetRow, subsetColumn, (use_row_subset, row_offset, row_length, use_col_subset, col_offset, col_length) => {
return gc.call(
module => module.read_sparse_matrix_from_hdf5_dense_array(
file, name, transposed, forceInteger, layered,
use_row_subset, row_offset, row_length, use_col_subset, col_offset, col_length
),
ScranMatrix
);
});
}

/**
* Initialize a (potentially layered) sparse matrix from a HDF5 group containing the usual `data`, `indices`, and `indptr` components of a compressed sparse matrix.
*
* @param {string} file - Path to the HDF5 file.
* For browsers, the file should have been saved to the virtual filesystem.
* @param {string} name - Name of the dataset inside the file.
* @param {number} numberOfRows - Number of rows in the matrix.
* @param {number} numberOfColumns - Number of columns in the matrix.
* @param {boolean} byColumn - Whether the matrix is in the compressed sparse column (CSC) format.
* If false, the format is assumed to be compressed sparse row (CSR) instead.
* @param {object} [options={}] - Optional parameters.
* @param {boolean} [options.forceInteger=false] - Whether to coerce all elements to integers via truncation.
* @param {boolean} [options.layered=true] - Whether to create a layered sparse matrix, see [**tatami_layered**](https://github.com/tatami-inc/tatami_layered) for more details.
* Only used if the relevant HDF5 dataset contains an integer type and/or `forceInteger = true`.
* Setting to `true` assumes that the matrix contains only non-negative integers.
* @param {?(Array|TypedArray|Int32WasmArray)} [options.subsetRow=null] - Row indices to extract.
* All indices must be non-negative integers less than the number of rows in the sparse matrix.
* @param {?(Array|TypedArray|Int32WasmArray)} [options.subsetColumn=null] - Column indices to extract.
* All indices must be non-negative integers less than the number of columns in the sparse matrix.
*
* @return {ScranMatrix} Matrix containing sparse data.
*/
export function initializeSparseMatrixFromHdf5SparseMatrix(file, name, numberOfRows, numberOfColumns, byColumn, { forceInteger = false, layered = true, subsetRow = null, subsetColumn = null } = {}) {
return prepare_hdf5_matrix_subset(subsetRow, subsetColumn, (use_row_subset, row_offset, row_length, use_col_subset, col_offset, col_length) => {
return gc.call(
module => module.read_sparse_matrix_from_hdf5_sparse_matrix(
file, name, numberOfRows, numberOfColumns, byColumn, forceInteger, layered,
use_row_subset, row_offset, row_length, use_col_subset, col_offset, col_length
),
ScranMatrix
);
});
}

/**
* Extract the format and dimensions of a HDF5 matrix.
*
* @param {string} file Path to the HDF5 file.
* For browsers, the file should have been saved to the virtual filesystem.
* @param {string} name Name of the dataset inside the file.
* This can be a HDF5 Dataset for dense matrices or a HDF5 Group for sparse matrices.
* For the latter, both H5AD and 10X-style sparse formats are supported.
*
* @return {object} An object containing:
* - `rows`, the number of rows in the matrix.
* - `columns`, the number of columns.
* - `format`, whether the matrix is dense, CSR or CSC.
* - `integer`, whether the matrix data is stored as integers or doubles.
*/
export function extractHdf5MatrixDetails(file, name) {
let output = {};
let arr = utils.createInt32WasmArray(5);
try {
wasm.call(module => module.extract_hdf5_matrix_details(file, name, arr.offset));

let vals = arr.array();
if (vals[0] > 0) {
output.format = "dense";
} else if (vals[1] > 0) {
output.format = "csc";
} else {
output.format = "csr";
}

output.rows = vals[2];
output.columns = vals[3];
output.integer = vals[4] > 0;
} finally {
arr.free();
}
return output;
}
Loading

0 comments on commit 762a2c5

Please sign in to comment.