Skip to content

Commit

Permalink
Renamed logNormCounts to normalizeCounts with a new log=true option.
Browse files Browse the repository at this point in the history
This aligns with the naming in the C++ code and also makes it less weird when
the function is potentially used with log=false.
  • Loading branch information
LTLA committed Oct 13, 2024
1 parent 02379c8 commit 35bacf5
Show file tree
Hide file tree
Showing 8 changed files with 26 additions and 23 deletions.
2 changes: 1 addition & 1 deletion js/index.js
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ export * from "./suggestCrisprQcFilters.js";
export * from "./filterCells.js";

export * from "./computeClrm1Factors.js";
export * from "./logNormCounts.js";
export * from "./normalizeCounts.js";

export * from "./modelGeneVariances.js";
export * from "./chooseHvgs.js";
Expand Down
14 changes: 8 additions & 6 deletions js/logNormCounts.js → js/normalizeCounts.js
Original file line number Diff line number Diff line change
Expand Up @@ -12,17 +12,19 @@ import * as wasm from "./wasm.js";
* This should have length equal to the number of columns in `x`.
* If centering is required, it should be applied with {@linkcode centerSizeFactors} - no additional centering is performed here.
* If `null`, size factors are computed from the centered column sums of `x`.
* @param {boolean} [options.log=true] - Whether to perform log-transformation.
* @param {boolean} [options.allowZeros=false] - Whether size factors of zero should be allowed.
* If `true`, size factors of zero are converted to the smallest non-zero size factor across all cells.
* If `false`, an error is raised instead.
* @param {boolean} [options.allowZeros=false] - Whether non-finite size factors should be allowed.
* If `true`, size factors of infinity or NaN are converted to the largest non-zero size factor in the dataset or 1, respectively.
* If `false`, an error is raised instead.
*
* @return {ScranMatrix} A matrix of the same type as `x` containing log-transformed normalized expression values.
* @return {ScranMatrix} A matrix of the same type as `x` containing normalized expression values.
* If `log = true`, the values in the matrix are log-transformed.
*/
export function logNormCounts(x, options = {}) {
const { sizeFactors = null, allowZeros = false, allowNonFinite = false, ...others } = options;
export function normalizeCounts(x, options = {}) {
const { sizeFactors = null, log = true, allowZeros = false, allowNonFinite = false, ...others } = options;
utils.checkOtherOptions(others);

var sf_data;
Expand All @@ -41,7 +43,7 @@ export function logNormCounts(x, options = {}) {
}

output = gc.call(
module => module.normalize_counts(x.matrix, sf_data.offset, allowZeros, allowNonFinite),
module => module.normalize_counts(x.matrix, sf_data.offset, log, allowZeros, allowNonFinite),
x.constructor
);

Expand All @@ -58,11 +60,11 @@ export function logNormCounts(x, options = {}) {

/**
* Center size factors in preparation for log-transformation.
* This is usually called by {@linkcode logNormCounts} internally, but can also be directly called by users to reconstitute the size factors used in the log-normalized matrix.
* This is usually called by {@linkcode normalizeCounts} internally, but can also be directly called by users to reconstitute the size factors used in the log-normalized matrix.
*
* @param {TypedArray|WasmArray} sizeFactors - Array of non-negative size factors, one per cell.
* @param {object} [options={}] - Optional parameters.
* @param {?(Int32WasmArray|Array|TypedArray)} [options.block=null] - Array containing the block assignment for each cell, see {@linkcode logNormCounts}.
* @param {?(Int32WasmArray|Array|TypedArray)} [options.block=null] - Array containing the block assignment for each cell, see {@linkcode normalizeCounts}.
* @param {boolean} [options.asTypedArray=true] - Whether to return a Float64Array.
* If `false`, a Float64WasmArray is returned instead.
* @param {?Float64WasmArray} [options.buffer=null] - Buffer in which to store the output size factors.
Expand Down
3 changes: 2 additions & 1 deletion src/normalize_counts.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ void center_size_factors(size_t n, uintptr_t ptr, bool use_blocks, uintptr_t blo
}
}

NumericMatrix normalize_counts(const NumericMatrix& mat, uintptr_t size_factors, bool allow_zero, bool allow_non_finite) {
NumericMatrix normalize_counts(const NumericMatrix& mat, uintptr_t size_factors, bool log, bool allow_zero, bool allow_non_finite) {
const double* sfptr = reinterpret_cast<const double*>(size_factors);
std::vector<double> sf(sfptr, sfptr + mat.ncol());

Expand All @@ -40,6 +40,7 @@ NumericMatrix normalize_counts(const NumericMatrix& mat, uintptr_t size_factors,
scran_norm::sanitize_size_factors(sf.size(), sf.data(), san_opt);

scran_norm::NormalizeCountsOptions norm_opt;
norm_opt.log = log;
return NumericMatrix(scran_norm::normalize_counts(mat.ptr, std::move(sf), norm_opt));
}

Expand Down
2 changes: 1 addition & 1 deletion tests/chooseHvgs.test.js
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ test("chooseHvgs works correctly", () => {
var ncells = 100;

var mat = simulate.simulateMatrix(ngenes, ncells);
var norm = scran.logNormCounts(mat);
var norm = scran.normalizeCounts(mat);
var res = scran.modelGeneVariances(norm);

var output = scran.chooseHvgs(res, { number: 101 });
Expand Down
4 changes: 2 additions & 2 deletions tests/modelGeneVariances.test.js
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ test("Variance modelling works as expected", () => {
var ncells = 100;

var mat = simulate.simulateMatrix(ngenes, ncells);
var norm = scran.logNormCounts(mat);
var norm = scran.normalizeCounts(mat);
var res = scran.modelGeneVariances(norm);

// Some cursory tests.
Expand All @@ -32,7 +32,7 @@ test("Variance modelling works as expected with blocking", () => {
var ncells = 100;

var mat = simulate.simulateMatrix(ngenes, ncells);
var norm = scran.logNormCounts(mat);
var norm = scran.normalizeCounts(mat);

var block = new Array(ncells);
var half = ncells / 2;
Expand Down
8 changes: 4 additions & 4 deletions tests/logNormCounts.test.js → tests/normalizeCounts.test.js
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ test("Log-normalization works as expected", () => {
var ncells = 20;
var mat = simulate.simulateMatrix(ngenes, ncells);

var norm = scran.logNormCounts(mat);
var norm = scran.normalizeCounts(mat);
expect(norm.constructor.name).toBe(mat.constructor.name);
expect(norm.numberOfRows()).toBe(mat.numberOfRows());
expect(norm.numberOfColumns()).toBe(mat.numberOfColumns());
Expand Down Expand Up @@ -40,7 +40,7 @@ test("Log-normalization works as expected with pre-supplied size factors", () =>
sf[i] = Math.random();
}

var norm = scran.logNormCounts(mat, { sizeFactors: sf });
var norm = scran.normalizeCounts(mat, { sizeFactors: sf });
expect(norm.constructor.name).toBe(mat.constructor.name);
expect(norm.numberOfRows()).toBe(mat.numberOfRows());
expect(norm.numberOfColumns()).toBe(mat.numberOfColumns());
Expand Down Expand Up @@ -89,10 +89,10 @@ test("Log-normalization behaves with zeros", () => {

var empty = new Float64Array(ncells);
empty.fill(0);
expect(() => scran.logNormCounts(mat, { sizeFactors: empty })).toThrow("zero");
expect(() => scran.normalizeCounts(mat, { sizeFactors: empty })).toThrow("zero");

// Now trying with allowed zeros.
let out = scran.logNormCounts(mat, { sizeFactors: empty, allowZeros: true });
let out = scran.normalizeCounts(mat, { sizeFactors: empty, allowZeros: true });
let ocol = out.column(0);
let rcol = mat.column(0);
for (var i = 0; i < ngenes; i++) {
Expand Down
6 changes: 3 additions & 3 deletions tests/scoreGsdecon.test.js
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ test("scoreGsdecon works as expected with Uint8Array inputs", () => {
var ngenes = 1000;
var ncells = 20;
var mat = simulate.simulateMatrix(ngenes, ncells);
var norm = scran.logNormCounts(mat);
var norm = scran.normalizeCounts(mat);

let features = new Uint8Array(ngenes);
features.fill(1, 10, 20);
Expand All @@ -25,7 +25,7 @@ test("scoreGsdecon gives different results after scaling", () => {
var ngenes = 1000;
var ncells = 20;
var mat = simulate.simulateMatrix(ngenes, ncells);
var norm = scran.logNormCounts(mat);
var norm = scran.normalizeCounts(mat);

let features = new Uint8Array(ngenes);
features.fill(1, 10, 20);
Expand All @@ -40,7 +40,7 @@ test("scoreGsdecon works with blocking", () => {
var ngenes = 1000;
var ncells = 50;
var mat = simulate.simulateMatrix(ngenes, ncells);
var norm = scran.logNormCounts(mat);
var norm = scran.normalizeCounts(mat);

let features = new Uint8Array(ngenes);
features.fill(1, 0, 5);
Expand Down
10 changes: 5 additions & 5 deletions tests/scoreMarkers.test.js
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ test("scoreMarkers works as expected", () => {
var ngenes = 1000;
var ncells = 20;
var mat = simulate.simulateMatrix(ngenes, ncells);
var norm = scran.logNormCounts(mat);
var norm = scran.normalizeCounts(mat);

var groups = [];
for (var i = 0; i < ncells; i++) {
Expand Down Expand Up @@ -40,7 +40,7 @@ test("scoreMarkers works with a log-fold change threshold", () => {
var ngenes = 1000;
var ncells = 20;
var mat = simulate.simulateMatrix(ngenes, ncells);
var norm = scran.logNormCounts(mat);
var norm = scran.normalizeCounts(mat);

var groups = [];
for (var i = 0; i < ncells; i++) {
Expand All @@ -67,7 +67,7 @@ test("scoreMarkers works after turning off AUCs", () => {
var ngenes = 1000;
var ncells = 20;
var mat = simulate.simulateMatrix(ngenes, ncells);
var norm = scran.logNormCounts(mat);
var norm = scran.normalizeCounts(mat);

var groups = [];
for (var i = 0; i < ncells; i++) {
Expand Down Expand Up @@ -96,7 +96,7 @@ test("scoreMarkers works with maximum and medians", () => {
var ngenes = 1000;
var ncells = 20;
var mat = simulate.simulateMatrix(ngenes, ncells);
var norm = scran.logNormCounts(mat);
var norm = scran.normalizeCounts(mat);

var groups = [];
for (var i = 0; i < ncells; i++) {
Expand All @@ -118,7 +118,7 @@ test("scoreMarkers works as expected with blocking", () => {
var ngenes = 1000;
var ncells = 20;
var mat = simulate.simulateMatrix(ngenes, ncells);
var norm = scran.logNormCounts(mat);
var norm = scran.normalizeCounts(mat);

var groups = [];
for (var i = 0; i < ncells; i++) {
Expand Down

0 comments on commit 35bacf5

Please sign in to comment.