Skip to content

Commit

Permalink
[egs] Update RM chain recipe with more recent configuration (#3237)
Browse files Browse the repository at this point in the history
  • Loading branch information
indra622 authored and danpovey committed Apr 19, 2019
1 parent b3a6e17 commit 84ecd0e
Show file tree
Hide file tree
Showing 5 changed files with 184 additions and 1 deletion.
5 changes: 4 additions & 1 deletion egs/rm/s5/RESULTS
Original file line number Diff line number Diff line change
Expand Up @@ -233,10 +233,13 @@ for x in exp/nnet2_online_wsj/nnet_ms_a_smbr_0.00005/1/decode_*; do grep WER $x/
# current best chain result with TDNN (check local/chain/run_tdnn_5g.sh)
%WER 2.86 [ 358 / 12533, 46 ins, 61 del, 251 sub ] exp/chain/tdnn_5g/decode/wer_5_0.0
%WER 2.71 [ 340 / 12533, 58 ins, 59 del, 223 sub ] exp/chain/tdnn_5n/decode/wer_4_0.0
# This is a modified version of run_tdnn_5n.sh. It uses
# a new configs convention for chain model after kaldi 5.2.
%WER 1.52 [ 191 / 12533, 14 ins, 39 del, 138 sub ] exp/chain/tdnn_5o/decode/wer_4_0.5

### WSJ->RM Transfer learning using chain model ###
%WER 1.68 [ 210 / 12533, 25 ins, 33 del, 152 sub ] exp/chain/tdnn_wsj_rm_1a/decode/wer_2_0.0

### nnet1 results ###

# dnn4b, MFCC,LDA,fMLLR feaures, (Karel - 30.7.2015)
Expand Down
1 change: 1 addition & 0 deletions egs/rm/s5/local/chain/run_tdnn.sh
File renamed without changes.
File renamed without changes.
179 changes: 179 additions & 0 deletions egs/rm/s5/local/chain/tuning/run_tdnn_5o.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
#!/bin/bash

# this script is a modified version of run_tdnn_5n.sh. It uses
# a new configs convention for chain model after kaldi 5.2.



set -e

# configs for 'chain'
stage=0
train_stage=-10
get_egs_stage=-10
xent_regularize=0.1
dir=exp/chain/tdnn_5o

# training options
num_epochs=12
initial_effective_lrate=0.005
final_effective_lrate=0.0005
max_param_change=2.0
final_layer_normalize_target=0.5
num_jobs_initial=2
num_jobs_final=4
minibatch_size=128
frames_per_eg=150
remove_egs=false
#common_egs_dir=exp/chain/tdnn_5g/egs/
common_egs_dir=
# End configuration section.
echo "$0 $@" # Print the command line for logging

. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh

if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi

# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet2 setup, and you can skip them by setting "--stage 4" if you have already
# run those things.

ali_dir=exp/tri3b_ali
treedir=exp/chain/tri4_5o_tree
lang=data/lang_chain_5o

local/online/run_nnet2_common.sh --stage $stage || exit 1;

if [ $stage -le 4 ]; then
# Get the alignments as lattices (gives the chain training more freedom).
# use the same num-jobs as the alignments
nj=$(cat exp/tri3b_ali/num_jobs) || exit 1;
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/train \
data/lang exp/tri3b exp/tri3b_lats
rm exp/tri3b_lats/fsts.*.gz # save space
fi

if [ $stage -le 5 ]; then
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
rm -rf $lang
cp -r data/lang $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi

if [ $stage -le 6 ]; then
# Build a tree using our new topology.
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
--cmd "$train_cmd" 1200 data/train $lang $ali_dir $treedir
fi

if [ $stage -le 7 ]; then
mkdir -p $dir
echo "$0: creating neural net configs using the xconfig parser";

num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}')
learning_rate_factor=$(echo "print(0.5/$xent_regularize)" | python)
tdnn_opts="l2-regularize=0.01 dropout-proportion=0.0 dropout-per-dim-continuous=true"
tdnnf_opts="l2-regularize=0.01 dropout-proportion=0.0 bypass-scale=0.66"
linear_opts="l2-regularize=0.01 orthonormal-constraint=-1.0"
prefinal_opts="l2-regularize=0.01"
output_opts="l2-regularize=0.005"

mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=50 name=ivector
input dim=13 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
# the first splicing is moved before the lda layer, so no splicing here
relu-batchnorm-dropout-layer name=tdnn1 $tdnn_opts dim=1024
tdnnf-layer name=tdnnf2 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
tdnnf-layer name=tdnnf3 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
tdnnf-layer name=tdnnf4 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=1
tdnnf-layer name=tdnnf5 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=0
tdnnf-layer name=tdnnf6 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf7 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf8 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf9 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf10 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf11 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf12 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
tdnnf-layer name=tdnnf13 $tdnnf_opts dim=1024 bottleneck-dim=128 time-stride=3
linear-component name=prefinal-l dim=192 $linear_opts
prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts big-dim=1024 small-dim=192
output-layer name=output include-log-softmax=false dim=$num_targets $output_opts
prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts big-dim=1024 small-dim=192
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi

if [ $stage -le 8 ]; then
steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir exp/nnet2_online/ivectors \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize 0.1 \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.00005 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=200" \
--egs.dir "$common_egs_dir" \
--egs.opts "--frames-overlap-per-eg 0" \
--egs.chunk-width $frames_per_eg \
--trainer.num-chunk-per-minibatch $minibatch_size \
--trainer.frames-per-iter 1000000 \
--trainer.num-epochs $num_epochs \
--trainer.optimization.num-jobs-initial $num_jobs_initial \
--trainer.optimization.num-jobs-final $num_jobs_final \
--trainer.optimization.initial-effective-lrate $initial_effective_lrate \
--trainer.optimization.final-effective-lrate $final_effective_lrate \
--trainer.max-param-change $max_param_change \
--cleanup.remove-egs $remove_egs \
--feat-dir data/train \
--tree-dir $treedir \
--lat-dir exp/tri3b_lats \
--dir $dir
fi

if [ $stage -le 9 ]; then
steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 4 \
data/test exp/nnet2_online/extractor exp/nnet2_online/ivectors_test || exit 1;
fi

if [ $stage -le 10 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 data/lang $dir $dir/graph
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--scoring-opts "--min-lmwt 1" \
--nj 20 --cmd "$decode_cmd" \
--online-ivector-dir exp/nnet2_online/ivectors_test \
$dir/graph data/test $dir/decode || exit 1;
fi

if [ $stage -le 11 ]; then
utils/mkgraph.sh --self-loop-scale 1.0 data/lang_ug $dir $dir/graph_ug
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--nj 20 --cmd "$decode_cmd" \
--online-ivector-dir exp/nnet2_online/ivectors_test \
$dir/graph_ug data/test $dir/decode_ug || exit 1;
fi
wait;
exit 0;

0 comments on commit 84ecd0e

Please sign in to comment.