Skip to content

Redis-backed hybrid caching for lightning-fast Python data access

License

Notifications You must be signed in to change notification settings

jzr-supove/FlipCache

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

⚡️ FlipCache

Downloads total Downloads monthly PyPi Package Version PyPi status Supported python versions Github issues MIT License Views

PyCache Logo

Redis-backed hybrid caching for lightning-fast Python data access

🤷‍♂️ Why FlipCache?

  • Seamlessly integrate Redis for accelerated data retrieval in your Python projects.
  • Optimize performance with an in-memory cache layer backed by Redis persistence.
  • Enjoy ease-of-use and flexible configuration

📥 Installation

pip install flipcache

🚀 Key Features

  • Hybrid Caching: Transparent in-memory caching combined with Redis for scalable persistence.
  • Expire Times: Set custom expiration times for cached data.
  • Configurable: Tailor cache size, data types, and more.

👨‍💻 Usage Examples

Basic

from flipcache import FlipCache

cache = FlipCache("my_cache")

cache["my_key"] = "my_value"
print(cache["my_key"])  # Outputs: "my_value"
print(cache["unknown"])  # Outputs: None
print("my_key" in cache)  # Outputs: True

Pros compared to using simple dictionary:

  • Data persistence backed by Redis
  • Seamless data conversion from Redis to Python
  • Fast data access, compared to pure redis
  • Returns None instead of raising an error on key indexing

Expiring Cache

import time
from flipcache import FlipCache

expiring_cache = FlipCache("expiring", local_max=0, expire_time=5)

expiring_cache["data"] = "This will expire"
time.sleep(6)
print(expiring_cache["data"])  # Outputs: None

In order to expiring-feature work with its full potential, we need to set local_max to 0, removing the caching layer. You lose out on faster data retrieval, in order to get precise expiration results. We can combine expire_time and local_max, in that case we can access data from cache memory that could have been expired.

JSON Cache

from flipcache import FlipCache, et

user_data = FlipCache(
    "user_data",
    local_max=100,
    expire_time=et.THREE_DAYS,
    value_type="json"
)

data = {
    "state": 1,
    "orders": [1, 2, 3, 4],
    "items": {
        "foo": 1,
        "bar": True,
        "baz": []
    }
}

# Store data
user_data["some-uuid"] = data
print(user_data["some-uuid"])  # {'state': 1, 'orders': [1, 2, 3, 4], 'items': {'foo': 1, 'bar': True, 'baz': []}}

# Update data
data["state"] = 2
data["items"]["bar"] = False
user_data["some-uuid"] = data
print(user_data["some-uuid"])  # {'state': 2, 'orders': [1, 2, 3, 4], 'items': {'foo': 1, 'bar': False, 'baz': []}}

# Delete data
del user_data["some-uuid"]
print(user_data["some-uuid"])  # None

Custom Encoder/Decoder

from flipcache import FlipCache
from dataclasses import dataclass, field


@dataclass
class Shape:
    name: str = "default"
    dimensions: list[float] = field(default_factory=list)
    edges: int = 0
    area: float = 0

    def __post_init__(self):
        if not self.area and self.dimensions:
            self.area = self.dimensions[0] * self.dimensions[1]


def encode_shape(shape: Shape) -> str:
    return f"{shape.name}||{shape.dimensions}||{shape.edges}||{shape.area}"


def decode_shape(shape: str) -> Shape:
    data = shape.split("||")
    return Shape(
        name=data[0],
        dimensions=[float(num) for num in data[1].strip('[]').split(',') if num],
        edges=int(data[2]),
        area=float(data[3])
    )


my_shape = Shape(name='womp', dimensions=[4.1, 3.4], edges=6, area=16.38)
shape2 = Shape(name='wat', dimensions=[11, 22])

custom = FlipCache(
    "custom",
    local_max=0,
    key_type='int',
    value_type='custom',
    value_default=Shape(),
    value_encoder=encode_shape,
    value_decoder=decode_shape
)

custom[123] = my_shape
custom[456] = shape2
print(custom[123])  # Shape(name='womp', dimensions=[4.1, 3.4], edges=6, area=16.38)
print(custom[321])  # Shape(name='default', dimensions=[], edges=0, area=0.0)
print(custom[456])  # Shape(name='wat', dimensions=[11.0, 22.0], edges=0, area=242.0)

For more usage examples and details, see examples

⚙️ Configuration Options

  • local_max: Maximum items in the in-memory cache.
  • expire_time: Redis key expiration time.
  • key_type: Expected key data type.
  • value_type: Expected value data type.
  • value_encoder: Custom function used to encode the value for redis
  • value_decoder: Custom function used to decode the value from redis
  • refresh_expire_time_on_get: Refresh Redis key expiration on access
  • redis_protocol: custom redis.Redis instance to be passed

📊 Benchmarks

Setup
from flipcache import FlipCache
from redis import Redis

KEYS = 1_000
rdp = Redis(decode_responses=True)
cache = FlipCache(name="my_cache", redis_protocol=rdp, local_max=KEYS)


def redis_set():
    for i in range(KEYS):
        rdp.set(f"my_cache:{i}", i * 2)


def pycache_set():
    for i in range(KEYS):
        cache[i] = i * 2


def redis_get():
    for _ in range(100):
        for i in range(KEYS):
            v = rdp.get(f"my_cache:{i}")


def pycache_get():
    for _ in range(100):
        for i in range(KEYS):
            v = cache[i]
Benchmark Name Mean Time (s) Standard Deviation
redis_set 0.252 0.013
flipcache_set 0.242 0.003
redis_get 22.986 0.518
flipcache_get 0.0172 0.000

📋 Plans for future releases

  • Make it possible to use other redis implementations such as aioredis
  • Create readthedocs site for detailed documentation
  • Optimize and add new functionality
  • Make it threadsafe
  • Add tests

About

Redis-backed hybrid caching for lightning-fast Python data access

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages