Skip to content

Commit

Permalink
Merge pull request #26 from jungtaekkim/0.5.3
Browse files Browse the repository at this point in the history
0.5.3
  • Loading branch information
jungtaekkim authored Aug 25, 2022
2 parents 0765ec3 + 3715f30 commit aca71eb
Show file tree
Hide file tree
Showing 21 changed files with 297 additions and 143 deletions.
67 changes: 0 additions & 67 deletions .circleci/config.yml

This file was deleted.

9 changes: 5 additions & 4 deletions .github/workflows/pytest.yml
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,11 @@ jobs:
strategy:
matrix:
python-version:
- 3.6
- 3.7
- 3.8
- 3.9
- '3.6'
- '3.7'
- '3.8'
- '3.9'
- '3.10'
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
Expand Down
2 changes: 1 addition & 1 deletion LICENSE
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
MIT License

Copyright (c) 2017-2021 Jungtaek Kim
Copyright (c) 2017-2022 Jungtaek Kim

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
Expand Down
5 changes: 3 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -72,9 +72,10 @@ We test our package in the following versions.
* Python 3.7
* Python 3.8
* Python 3.9
* Python 3.10

## Contributor
* [Jungtaek Kim](https://jungtaek.github.io) (POSTECH)
* [Jungtaek Kim](https://jungtaek.github.io)

## Citation
```
Expand All @@ -87,7 +88,7 @@ We test our package in the following versions.
```

## Contact
* Jungtaek Kim: [[email protected]](mailto:[email protected])
* [Jungtaek Kim](https://jungtaek.github.io)

## License
[MIT License](LICENSE)
4 changes: 2 additions & 2 deletions bayeso/__init__.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
#
# author: Jungtaek Kim ([email protected])
# last updated: October 23, 2021
# last updated: February 3, 2022
#
"""BayesO is a simple, but essential Bayesian optimization
package, implemented in Python."""


__version__ = '0.5.2'
__version__ = '0.5.3'
6 changes: 5 additions & 1 deletion bayeso/bo/bo_w_gp.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
#
# author: Jungtaek Kim ([email protected])
# last updated: October 8, 2021
# last updated: February 4, 2022
#
"""It defines a class of Bayesian optimization
with Gaussian process regression."""
Expand Down Expand Up @@ -453,6 +453,10 @@ def optimize(self, X_train: np.ndarray, Y_train: np.ndarray,
)
next_point, next_points = self._optimize(fun_negative_acquisition,
str_sampling_method=str_sampling_method, num_samples=num_samples)

next_point = utils_bo.check_points_in_bounds(next_point[np.newaxis, ...], np.array(self._get_bounds()))[0]
next_points = utils_bo.check_points_in_bounds(next_points, np.array(self._get_bounds()))

time_end_acq = time.time()

acquisitions = fun_negative_acquisition(next_points)
Expand Down
6 changes: 5 additions & 1 deletion bayeso/bo/bo_w_tp.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
#
# author: Jungtaek Kim ([email protected])
# last updated: October 8, 2021
# last updated: February 4, 2022
#
"""It defines a class of Bayesian optimization
with Student-:math:`t` process regression."""
Expand Down Expand Up @@ -375,6 +375,10 @@ def optimize(self, X_train: np.ndarray, Y_train: np.ndarray,
)
next_point, next_points = self._optimize(fun_negative_acquisition,
str_sampling_method=str_sampling_method, num_samples=num_samples)

next_point = utils_bo.check_points_in_bounds(next_point[np.newaxis, ...], np.array(self._get_bounds()))[0]
next_points = utils_bo.check_points_in_bounds(next_points, np.array(self._get_bounds()))

time_end_acq = time.time()

acquisitions = fun_negative_acquisition(next_points)
Expand Down
4 changes: 3 additions & 1 deletion bayeso/bo/bo_w_trees.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
#
# author: Jungtaek Kim ([email protected])
# last updated: October 8, 2021
# last updated: February 4, 2022
#
"""It defines a class of Bayesian optimization
with tree-based surrogate models."""
Expand Down Expand Up @@ -253,6 +253,8 @@ def optimize(self, X_train: np.ndarray, Y_train: np.ndarray,
num_samples=num_samples
)

next_points = utils_bo.check_points_in_bounds(next_points, np.array(self._get_bounds()))

fun_negative_acquisition = lambda X_test: -1.0 * self.compute_acquisitions(
X_test, X_train, Y_train, trees
)
Expand Down
1 change: 1 addition & 0 deletions bayeso/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,6 +128,7 @@
TYPING_TUPLE_FIVE_ARRAYS = typing.Tuple[TYPE_ARR, TYPE_ARR, TYPE_ARR, TYPE_ARR, TYPE_ARR]
TYPING_TUPLE_FLOAT_THREE_ARRAYS = typing.Tuple[float, TYPE_ARR, TYPE_ARR, TYPE_ARR]
TYPING_TUPLE_FLOAT_ARRAY = typing.Tuple[float, TYPE_ARR]
TYPING_TUPLE_INT_FLOAT_TUPLE = typing.Tuple[int, float, typing.Tuple]

TYPING_UNION_INT_NONE = typing.Union[int, TYPE_NONE]
TYPING_UNION_INT_FLOAT = typing.Union[int, float]
Expand Down
106 changes: 70 additions & 36 deletions bayeso/trees/trees_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -189,16 +189,65 @@ def _split_left_right(
assert X.shape[0] == Y.shape[0]
assert Y.shape[1] == 1

left = []
right = []
indices_left = X[:, dim_to_split] < val_to_split
left = list(zip(X[indices_left], Y[indices_left]))

indices_right = X[:, dim_to_split] >= val_to_split
right = list(zip(X[indices_right], Y[indices_right]))

for bx, by in zip(X, Y):
if bx[dim_to_split] < val_to_split:
left.append((bx, by))
else:
right.append((bx, by))
return left, right

@utils_common.validate_types
def _split_deterministic(X: np.ndarray, Y: np.ndarray, dim_to_split: int
) -> constants.TYPING_TUPLE_INT_FLOAT_TUPLE:
candidates_loc = np.sort(np.unique(X[:, dim_to_split]))
num_evaluations = 1
if candidates_loc.shape[0] > 1:
num_evaluations = candidates_loc.shape[0] - 1

cur_ind = np.inf
cur_val = np.inf
cur_score = np.inf
cur_left_right = None

indices_loc = np.random.choice(
num_evaluations, np.minimum(20, num_evaluations), replace=False)

for ind_loc in indices_loc:
if candidates_loc.shape[0] > 1:
val_to_split = np.mean(candidates_loc[ind_loc:ind_loc+2])
else:
val_to_split = X[0, dim_to_split]

left_right = _split_left_right(X, Y, dim_to_split, val_to_split)
score = mse(left_right)

if score < cur_score:
cur_ind = dim_to_split
cur_val = val_to_split
cur_score = score
cur_left_right = left_right

return cur_ind, cur_val, cur_score, cur_left_right

@utils_common.validate_types
def _split_random(X: np.ndarray, Y: np.ndarray, dim_to_split: int
) -> constants.TYPING_TUPLE_INT_FLOAT_TUPLE:
candidates_loc = np.sort(np.unique(X[:, dim_to_split]))

if candidates_loc.shape[0] > 1:
min_bx = np.min(X[:, dim_to_split])
max_bx = np.max(X[:, dim_to_split])

val_to_split = np.random.uniform(low=min_bx, high=max_bx)
else:
val_to_split = X[0, dim_to_split]

left_right = _split_left_right(X, Y, dim_to_split, val_to_split)
score = mse(left_right)

return dim_to_split, val_to_split, score, left_right

@utils_common.validate_types
def _split(
X: np.ndarray, Y: np.ndarray,
Expand Down Expand Up @@ -235,43 +284,28 @@ def _split(
assert X.shape[0] > 0
assert Y.shape[1] == 1

features = np.random.choice(X.shape[1], num_features, replace=False)

cur_ind = np.inf
cur_val = np.inf
cur_score = np.inf
cur_left_right = None

features = np.random.choice(X.shape[1], num_features, replace=False)

for ind in features:
dim_to_split = int(ind)
num_evaluations = 1
candidates_loc = np.sort(np.unique(X[:, dim_to_split]))

if candidates_loc.shape[0] > 1:
if split_random_location:
min_bx = np.min(X[:, dim_to_split])
max_bx = np.max(X[:, dim_to_split])
else:
num_evaluations = candidates_loc.shape[0] - 1

for ind_loc in range(0, num_evaluations):
if candidates_loc.shape[0] > 1:
if split_random_location:
val_to_split = np.random.uniform(low=min_bx, high=max_bx)
else:
val_to_split = np.mean(candidates_loc[ind_loc:ind_loc+2])
else:
val_to_split = X[0, dim_to_split]

left_right = _split_left_right(X, Y, dim_to_split, val_to_split)
# left, right = left_right
score = mse(left_right)

if score < cur_score:
cur_ind = dim_to_split
cur_val = val_to_split
cur_score = score
cur_left_right = left_right
if split_random_location:
_ind, _val, _score, _left_right = _split_random(
X, Y, dim_to_split)
else:
_ind, _val, _score, _left_right = _split_deterministic(
X, Y, dim_to_split)

if _score < cur_score:
cur_ind = _ind
cur_val = _val
cur_score = _score
cur_left_right = _left_right

return {
'index': cur_ind,
Expand Down
32 changes: 31 additions & 1 deletion bayeso/utils/utils_bo.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
#
# author: Jungtaek Kim ([email protected])
# last updated: November 5, 2020
# last updated: February 4, 2022
#
"""It is utilities for Bayesian optimization."""

Expand Down Expand Up @@ -286,3 +286,33 @@ def check_hyps_convergence(list_hyps: constants.TYPING_LIST[dict], hyps: dict,
if np.linalg.norm(hyps_converted - target_hyps_converted, ord=2) < threshold:
converged = True
return converged

@utils_common.validate_types
def check_points_in_bounds(points: np.ndarray, bounds: np.ndarray
) -> np.ndarray:
"""
It checks whether every instance of `points` is located in `bounds`.
:param points: points to check. Shape: (n, d).
:type points: numpy.ndarray
:param bounds: upper and lower bounds. Shape: (d, 2).
:type bounds: numpy.ndarray
:returns: points in `bounds`. Shape: (n, d).
:rtype: numpy.ndarray
:raises: AssertionError
"""

assert isinstance(points, np.ndarray)
assert isinstance(bounds, np.ndarray)
assert len(points.shape) == 2
assert len(bounds.shape) == 2
assert points.shape[1] == bounds.shape[0]
assert bounds.shape[1] == 2

assert np.all(points >= bounds[:, 0])
assert np.all(points <= bounds[:, 1])

return points
2 changes: 0 additions & 2 deletions bayeso/wrappers/wrappers_bo_class.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,6 @@
from bayeso.utils import utils_bo
from bayeso.utils import utils_logger

#logger = utils_logger.get_logger('wrappers_bo_class')


class BayesianOptimization:
"""
Expand Down
2 changes: 0 additions & 2 deletions bayeso/wrappers/wrappers_bo_function.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,6 @@
from bayeso.utils import utils_common
from bayeso.utils import utils_logger

#logger = utils_logger.get_logger('wrappers_bo_function')


@utils_common.validate_types
def run_single_round_with_all_initial_information(model_bo: bo.BO,
Expand Down
Loading

0 comments on commit aca71eb

Please sign in to comment.