This package provides publication-quality regression tables for use with FixedEffectModels.jl, GLM.jl, GLFixedEffectModels.jl and MixedModels.jl, as well as any package that implements the RegressionModel abstraction.
In its objective it is similar to (and heavily inspired by) the Stata command esttab
and the R package stargazer
.
- RegressionTables.jl
To install the package, type in the Julia command prompt
] add RegressionTables
using RegressionTables, DataFrames, FixedEffectModels, RDatasets, GLM
df = dataset("datasets", "iris")
rr1 = reg(df, @formula(SepalLength ~ SepalWidth + fe(Species)))
rr2 = reg(df, @formula(SepalLength ~ SepalWidth + PetalLength + fe(Species)))
rr3 = reg(df, @formula(SepalLength ~ SepalWidth * PetalLength + PetalWidth + fe(Species)))
rr4 = reg(df, @formula(SepalWidth ~ SepalLength + PetalLength + PetalWidth + fe(Species)))
rr5 = glm(@formula(SepalWidth < 2.9 ~ PetalLength + PetalWidth + Species), df, Binomial())
regtable(
rr1,rr2,rr3,rr4,rr5;
render = AsciiTable(),
labels = Dict(
"versicolor" => "Versicolor",
"virginica" => "Virginica",
"PetalLength" => "Petal Length",
),
regression_statistics = [
Nobs => "Obs.",
R2,
R2Within,
PseudoR2 => "Pseudo-R2",
],
extralines = [
["Main Coefficient", "SepalWidth", "SepalWidth", "Petal Length", "Petal Length", "Intercept"],
DataRow(["Coef Diff", 0.372 => 2:3, 1.235 => 3:4, ""], align="lccr")
],
order = [r"Int", r" & ", r": "]
)
yields
----------------------------------------------------------------------------------------------------
SepalLength SepalWidth SepalWidth < 2.9
-------------------------------------- ------------ ----------------
(1) (2) (3) (4) (5)
----------------------------------------------------------------------------------------------------
(Intercept) -1.917
(1.242)
SepalWidth & Petal Length -0.070
(0.041)
Species: Versicolor 10.441***
(1.957)
Species: Virginica 13.230***
(2.636)
SepalWidth 0.804*** 0.432*** 0.719***
(0.106) (0.081) (0.155)
Petal Length 0.776*** 1.047*** -0.188* -0.773
(0.064) (0.143) (0.083) (0.554)
PetalWidth -0.259 0.626*** -3.782**
(0.154) (0.123) (1.256)
SepalLength 0.378***
(0.066)
----------------------------------------------------------------------------------------------------
Species Fixed Effects Yes Yes Yes Yes
----------------------------------------------------------------------------------------------------
Estimator OLS OLS OLS OLS Binomial
----------------------------------------------------------------------------------------------------
Obs. 150 150 150 150 150
R2 0.726 0.863 0.870 0.635
Within-R2 0.281 0.642 0.659 0.391
Pseudo-R2 0.527 0.811 0.831 0.862 0.347
Main Coefficient SepalWidth SepalWidth Petal Length Petal Length Intercept
Coef Diff 0.372 1.235
----------------------------------------------------------------------------------------------------
LaTeX output can be generated by using
regtable(rr1,rr2,rr3,rr4; render = LatexTable())
which yields
\begin{tabular}{lrrrr}
\toprule
& \multicolumn{3}{c}{SepalLength} & \multicolumn{1}{c}{SepalWidth} \\
\cmidrule(lr){2-4} \cmidrule(lr){5-5}
& (1) & (2) & (3) & (4) \\
\midrule
SepalWidth & 0.804*** & 0.432*** & 0.719*** & \\
& (0.106) & (0.081) & (0.155) & \\
PetalLength & & 0.776*** & 1.047*** & -0.188* \\
& & (0.064) & (0.143) & (0.083) \\
PetalWidth & & & -0.259 & 0.626*** \\
& & & (0.154) & (0.123) \\
SepalWidth $\times$ PetalLength & & & -0.070 & \\
& & & (0.041) & \\
SepalLength & & & & 0.378*** \\
& & & & (0.066) \\
\midrule
SpeciesDummy Fixed Effects & Yes & Yes & Yes & Yes \\
\midrule
$N$ & 150 & 150 & 150 & 150 \\
$R^2$ & 0.726 & 0.863 & 0.870 & 0.635 \\
Within-$R^2$ & 0.281 & 0.642 & 0.659 & 0.391 \\
\bottomrule
\end{tabular}
Similarly, HTML tables can be created with HtmlTable()
.
Send the output to a text file by passing the destination file as a keyword argument:
regtable(rr1,rr2,rr3,rr4; render = LatexTable(), file="myoutputfile.tex")
then use \input
in LaTeX to include that file in your code. Be sure to use the booktabs
package:
\documentclass{article}
\usepackage{booktabs}
\begin{document}
\begin{table}
\label{tab:mytable}
\input{myoutputfile}
\end{table}
\end{document}
regtable()
can also print TableRegressionModel
's from GLM.jl (and output from other packages that produce TableRegressionModel
's):
using GLM
dobson = DataFrame(Counts = [18.,17,15,20,10,20,25,13,12],
Outcome = categorical(repeat(["A", "B", "C"], outer = 3)),
Treatment = categorical(repeat(["a","b", "c"], inner = 3)))
rr1 = fit(LinearModel, @formula(SepalLength ~ SepalWidth), df)
lm1 = fit(LinearModel, @formula(SepalLength ~ SepalWidth), df)
gm1 = fit(GeneralizedLinearModel, @formula(Counts ~ 1 + Outcome + Treatment), dobson,
Poisson())
regtable(rr1,lm1,gm1)
yields
---------------------------------------------
SepalLength Counts
------------------- --------
(1) (2) (3)
---------------------------------------------
(Intercept) 6.526*** 6.526*** 3.045***
(0.479) (0.479) (0.171)
SepalWidth -0.223 -0.223
(0.155) (0.155)
Outcome: B -0.454
(0.202)
Outcome: C -0.293
(0.193)
Treatment: b 0.000
(0.200)
Treatment: c -0.000
(0.200)
---------------------------------------------
Estimator OLS OLS Poisson
---------------------------------------------
N 150 150 9
R2 0.014 0.014
Pseudo R2 0.006 0.006 0.104
---------------------------------------------
Printing of StatsBase.RegressionModel
s (e.g., MixedModels.jl and GLFixedEffectModels.jl) generally works but are less well tested; please file as issue if you encounter problems printing them.
rr::FixedEffectModel...
are theFixedEffectModel
s fromFixedEffectModels.jl
that should be printed. Only required argument.keep
is aVector
of regressor names (String
s), integers, ranges or regex that should be shown, in that order. Defaults to an empty vector, in which case all regressors will be shown.drop
is aVector
of regressor names (String
s), integers, ranges or regex that should not be shown. Defaults to an empty vector, in which case no regressors will be dropped.order
is aVector
of regressor names (String
s), integers, ranges or regex that should be shown in that order. Defaults to an empty vector, in which case the order of regressors will be unchanged. Other regressors are still shown (assumingdrop
is empty)fixedeffects
is aVector
of FE names (String
s), integers, ranges or regex that should be shown, in that order. Defaults to an empty vector, in which case all FE's will be shown.align
is aSymbol
from the set[:l,:c,:r]
indicating the alignment of results columns (default:r
right-aligned). Currently works only with ASCII and LaTeX output.header_align
is aSymbol
from the set[:l,:c,:r]
indicating the alignment of the header row (default:c
centered). Currently works only with ASCII and LaTeX output.labels
is aDict
that contains displayed labels for variables (String
s) and other text in the table. If no label for a variable is found, it default to variable names. See documentation for special values.estimformat
is aString
that describes the format of the estimate.digits
is anInt
that describes the precision to be shown in the estimate. Defaults tonothing
, which means the default (3) is used (default can be changed by settingRegressionTables.default_digits(render::AbstractRenderType, x) = 3
).statisticformat
is aString
that describes the format of the number below the estimate (se/t).digits_stats
is anInt
that describes the precision to be shown in the statistics. Defaults tonothing
, which means the default (3) is used (default can be changed by settingRegressionTables.default_digits(render::AbstractRenderType, x) = 3
).below_statistic
is a type that describes a statistic that should be shown below each point estimate. Recognized values arenothing
,StdError
,TStat
, andConfInt
.nothing
suppresses the line. Defaults toStdError
.regression_statistics
is aVector
of types that describe statistics to be shown at the bottom of the table. Built in types are Recognized symbols areNobs
,R2
,PseudoR2
,R2CoxSnell
,R2Nagelkerke
,R2Deviance
,AdjR2
,AdjPseudoR2
,AdjR2Deviance
,DOF
,LogLikelihood
,AIC
,AICC
,BIC
,FStat
,FStatPValue
,FStatIV
,FStatIVPValue
, R2Within. Defaults vary based on regression inputs (simple linear model is [Nobs, R2]).extralines
is aVector
or aVector{<:AbsractVector}
that will be added to the end of the table. A single vector will be its own row, a vector of vectors will each be a row. Defaults tonothing
.number_regressions
is aBool
that governs whether regressions should be numbered. Defaults totrue
.groups
is aVector
,Vector{<:AbstractVector}
orMatrix
of labels used to group regressions. This can be useful if results are shown for different data sets or sample restrictions.print_fe_section
is aBool
that governs whether a section on fixed effects should be shown. Defaults totrue
.print_estimator_section
is aBool
that governs whether to print a section on which estimator (OLS/IV/Binomial/Poisson...) is used. Defaults totrue
if more than one value is displayed.standardize_coef
is aBool
that governs whether the table should show standardized coefficients. Note that this only works withTableRegressionModel
s, and that only coefficient estimates and thebelow_statistic
are being standardized (i.e. the R^2 etc still pertain to the non-standardized regression).render::AbstractRenderType
is aAbstractRenderType
type that governs how the table should be rendered. Standard supported types are ASCII (viaAsciiTable()
) and LaTeX (viaLatexTable()
). Defaults toAsciiTable()
.file
is aString
that governs whether the table should be saved to a file. Defaults tonothing
.transform_labels
is aDict
or one of theSymbol
s:ampersand
,:underscore
,:underscore2space
,:latex
A typical use is to pass a number of FixedEffectModel
s to the function, along with how it should be rendered (with render
argument):
regtable(regressionResult1, regressionResult2; render = AsciiTable())
Pass a string to the file
argument to create or overwrite a file. For example, using LaTeX output,
regtable(regressionResult1, regressionResult2; render = LatexTable(), file="myoutfile.tex")
Version 0.6 was a major rewrite of the backend with the goal of increasing the flexibility and decreasing the dependencies on other packages (regression packages are now extensions). While most code written with v0.5 should continue to run, there might be a few differences and some deprecation warnings. Below is a brief overview of the changes:
- There is an
extralines
argument that can accept vectors with pairs, where the pair defines a multicolumn value (["Label", "two columns" => 2:3, 1.5 => 4:5]
), it can also accept aDataRow
object that allows for more control. - New
keep
drop
andorder
arguments allow exact names, regex to search within names, integers to select specific values, and ranges (1:4
) to select groups, and they can be mixed ([1:2, :end, r"Width"]
) labels
now applies to individual parts of an interaction or categorical coefficient name (hopefully reducing the number of labels required)- The interaction symbol now depends on the table type, so in Latex, the interactions will have
\$\\times\$
- Using a Latex table will also automatically escape parts of coefficient names (if no other labels are provided)
- A confidence interval is now an option for a below statistic (
below_statistic=ConfInt
) - Several defaults are different to try and provide more relevant information (see changes do defaults section)
- Fixed effect values now have a suffix (defaults to
" Fixed Effects"
) so that labeling can be simpler. Disable by settingprint_fe_suffix=false
- It is now possible to print the coefficient value and "under statistic" on the same line (
stat_below=false
) - It is possible to define custom regression statistics that are calculated based on the regressions provided
- It is possible to change the order of the major blocks in a regression table
- Using RegressionTables for descriptive statistics is now easier. Describe a DataFrame (
df_described=describe(df)
) and provide that to a RegressionTable (tab = RegressionTable(names(df_described), Matrix(df_described))
), there are also options to render the table as aLatexTable
orHtmlTable
. Write this to a file usingwrite(file_name, tab)
- It is possible to overwrite almost any setting. For example, to make T-Statistics the default in all tables, run
RegressionTables.default_below_statistic(render::AbstractRenderType)=TStat
- Option to show clustering (
print_clusters=true
).- Can also be the size of the clusters by running
Base.repr(render::AbstractRenderType, x::RegressionTables.ClusterValue; args...) = repr(render, value(x); args...)
- Can also be the size of the clusters by running
- Several new regression statistics are now available, the full list is:
[Nobs, R2, PseudoR2, R2CoxSnell, R2Nagelkerke, R2Deviance, AdjR2, AdjPseudoR2, AdjR2Deviance, DOF, LogLikelihood, AIC, AICC, BIC, FStat, FStatPValue, FStatIV, FStatIVPValue, R2Within]
- Use
LatexTableStar
to create a table that expands the entire text width
There are some changes to the defaults from version 0.5 and two additional settings
- Interactions in coefficients now vary based on the type of table. In Latex, this now defaults to
$\\times$
and in HTML×
. These can be changed by running:RegressionTables.interaction_combine(render::AbstractRenderType) = " & "
RegressionTables.interaction_combine(render::AbstractLatex) = " & "
RegressionTables.interaction_combine(render::AbstractHtml) = " & "
print_estimator
default wastrue
, now it istrue
if more than one type of regression is provided (i.e., "IV" and "OLS" will display the estimator, all "OLS" will not). Set to the old default by running:RegressionTables.default_print_estimator(x::AbstractRenderType, rrs) = true
number_regressions
default wastrue
, now it istrue
if more than one regression is provided. Set to the old default by running:RegressionTables.default_number_regressions(x::AbstractRenderType, rrs) = true
regression_statistics
default was[Nobs, R2]
, these will vary based on provided regressions. For example, a fixed effect regression will default to[Nobs, R2, R2Within]
and a Probit regression will default to[Nobs, PseudoR2]
(and if multiple types, these will be combined). Set to the old default by running:RegressionTables.default_regression_statistics(x::AbstractRenderType, rrs::Tuple) = [Nobs, R2]
- Labels for the type of the regression are more varied for non-linear cases, instead of "NL", it will display "Poisson", "Probit", etc. These can be changed by running:
RegressionTables.label_distribution(x::AbstractRenderType, d::Probit) = "NL"
print_fe_suffix
is a new setting where" Fixed Effect"
is added after the fixed effect. Turn this off for all tables by running:RegressionTables.default_print_fe_suffix(x::AbstractRenderType) = false
print_control_indicator
is a new setting where a line is added if any coefficients are omitted. Turn this off for all tables by running:RegressionTables.default_print_control_indicator(x::AbstractRenderType) = false
Labels for most display elements around the table are no longer handled by the labels
dictionary but by functions. The goal is to allow a "set and forget" mentality, where changing the label once permanently changes it for all tables. For example, instead of:
labels=Dict(
"__LABEL_ESTIMATOR__" => "Estimator",
"__LABEL_FE_YES__" => "Yes",
"__LABEL_FE_NO__" => "",
"__LABEL_ESTIMATOR_OLS" => "OLS",
"__LABEL_ESTIMATOR_IV" => "IV",
"__LABEL_ESTIMATOR_NL" => "NL"
)
Run
RegressionTables.label(render::AbstractRenderType, ::Type{RegressionType}) = "Estimator"
RegressionTables.fe_value(render::AbstractRenderType, v) = v ? "Yes" : ""
RegressionTables.label_ols(render::AbstractRenderType) = "OLS"
RegressionTables.label_iv(render::AbstractRenderType) = "IV"
RegressionTables.label_distribution(render::AbstractRenderType, d::Probit) = "Probit"# non-linear values now
# display distribution instead of "NL"
See the documentation for more examples. For regression statistics, it is possible to pass a pair (e.g., [Nobs => "Obs.", R2 => "R Squared"]
) to relabel those.
Labels for coefficient names are the same, but interaction and categorical terms might see some differences. Now, each part of an interaction or categorical term can be labeled independently (so labels=Dict("coef1" => "Coef 1", "coef2" => "Coef 2")
would relabel coef1 & coef2
to Coef 1 & Coef 2
). This might cause changes to tables if the labels dictionary contains an interaction label but not both pieces independently, the display would depend on which order the dictionary is applied (so labels=Dict("coef1" => "Coef 1", "coef1 & coef2" => "Coef 1 & Coef 2")
might turn the interaction into either Coef 1 & Coef 2
or Coef 1 & coef2
).
The custom_statistics
argument took a NamedTuple
with vectors, this is now simplified in the extralines
argument to a Vector
, where the first argument is what is displayed in the left most column. extralines
now accepts a Pair
of val => cols
(e.g., 0.153 => 2:3
), where the second value creates a multicolumn display. See the examples in the documentation under "Extralines".
For statistics that can use the values in the regression model (e.g., the mean of Y), it is possible to create those under an AbstractRegressionStatistic
. See the documentation for an example.
print_result
is no longer necessary since an object is returned by the regtable
function (which is editable) and displays well in notebooks like Pluto or Jupyter. Similarly for out_buffer
, use tab=regtable(...); print(io, tab)
.
renderSettings
is deprecated, userender
andfile
regressors
is deprecated, usekeep
drop
andorder