forked from stevengj/nlopt
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
4 changed files
with
163 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
import nlopt | ||
import math as m | ||
|
||
numFuncEval = [0] | ||
minf_ext = [1e300] | ||
|
||
lb = [-10., -10.] | ||
ub = [+10., +10.] | ||
|
||
|
||
def myfunc(x, grad): | ||
for j in range(2): | ||
if m.isnan(x[j]) or x[j] < lb[j] or x[j] > ub[j]: | ||
return 1.e10 | ||
numFuncEval[0] += 1 | ||
|
||
x1 = x[0] | ||
x2 = x[1] | ||
|
||
# http://al-roomi.org/benchmarks/unconstrained/2-dimensions/65-powell-s-badly-scaled-function | ||
# Powell's Badly Scaled Function | ||
# Range of initial points: -10 < xj < 10 , j=1,2 | ||
# Global minima: (x1,x2)=(1.098...e-5, 9.106...) | ||
# f(x1,x2)=0 | ||
f1 = (10000. * x1 * x2 - 1.)**2 | ||
f2 = (m.exp(-x1) + m.exp(-x2) - 1.0001)**2 | ||
retval = f1 + f2 | ||
|
||
if grad.size > 0: | ||
# raise ValueError('Cannot suppply gradient values') | ||
grad[0] = 2.0 * (10000. * x1 * x2 - 1.) * 10000. * x2 + 2.0 * (m.exp(-x1) + m.exp(-x2) - 1.0001) * -1.0 | ||
grad[1] = 2.0 * (10000. * x1 * x2 - 1.) * 10000. * x1 + 2.0 * (m.exp(-x1) + m.exp(-x2) - 1.0001) * -1.0 | ||
|
||
# print("myfunc: x:", x, ", val:", retval) | ||
|
||
if retval < minf_ext[0]: | ||
minf_ext[0] = retval | ||
|
||
return retval | ||
|
||
|
||
for algo in range(nlopt.NUM_ALGORITHMS): | ||
if algo in [nlopt.LD_LBFGS, nlopt.LD_VAR1, nlopt.LD_VAR2]: | ||
continue | ||
opt = nlopt.opt(algo, 2) | ||
|
||
print('-'*40) | ||
print("Algo:", opt.get_algorithm_name(), algo) | ||
numFuncEval[0] = 0 | ||
minf_ext = [1e300] | ||
|
||
opt.set_min_objective(myfunc) | ||
opt.set_lower_bounds(lb) | ||
opt.set_upper_bounds(ub) | ||
opt.set_maxeval(int(1e4)) | ||
opt.set_xtol_rel(1e-4) | ||
local_opt = nlopt.opt(nlopt.LD_MMA, 2) | ||
opt.set_local_optimizer(local_opt) | ||
x0 = [0.0, 0.0] | ||
print("x0:", x0) | ||
try: | ||
x = opt.optimize(x0) | ||
minf = opt.last_optimum_value() | ||
print("optimum at ", x[0], x[1]) | ||
print("minimum value = ", minf) | ||
print("result code = ", opt.last_optimize_result()) | ||
print("num function evaluations:", numFuncEval[0]) | ||
if minf_ext[0] < minf: | ||
raise ValueError(f"minimum value {minf} is not the true minimum {minf_ext[0]}") | ||
except nlopt.invalid_argument: | ||
# stogo/ags might not be enabled | ||
pass |