forked from pybamm-team/PyBaMM
-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
tidy up SOC and make example more interesting + change solve terminat…
…ion to warning
- Loading branch information
1 parent
4052412
commit 9a9aace
Showing
3 changed files
with
126 additions
and
103 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,110 +1,131 @@ | ||
# | ||
# Example to show the state of charge of a battery using the SPMe model | ||
# Initial conditions are specified to start each electrode in 1/2 charged | ||
# state. A charge and discharge are performed with current chosen to be | ||
# 1C rate when electrode dimensions are euqal. | ||
# Coulomb counting is performed to calculate the capacity of the | ||
# battery within the operating voltage limits and maximum particle concs. | ||
# The anode thickenss is varied to highlight the importance of electrode | ||
# sizing to enable full lithium utilization | ||
# | ||
import pybamm | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
plt.close("all") | ||
pybamm.set_logging_level("INFO") | ||
pybamm.set_logging_level(30) | ||
|
||
factor = 6.38 | ||
|
||
# Dimensions | ||
h = 0.137 | ||
w = 0.207 / factor | ||
A = h * w | ||
l_n = 1e-4 | ||
capacities = [] | ||
specific_capacities = [] | ||
l_p = 1e-4 | ||
l_s = 2.5e-5 | ||
l1d = (l_n + l_p + l_s) | ||
vol = h * w * l1d | ||
vol_cm3 = vol * 1e6 | ||
|
||
tot_cap = 0.0 | ||
tot_time = 0.0 | ||
fig, axes = plt.subplots(1, 2, sharey=True) | ||
I_mag = 1.01 / factor | ||
for enum, I_app in enumerate([-1.0, 1.0]): | ||
I_app *= I_mag | ||
# load model | ||
model = pybamm.lithium_ion.SPMe() | ||
# create geometry | ||
geometry = model.default_geometry | ||
# load parameter values and process model and geometry | ||
param = model.default_parameter_values | ||
|
||
param.update( | ||
{"Electrode height [m]": h, | ||
"Electrode width [m]": w, | ||
"Negative electrode thickness [m]": l_n, | ||
"Positive electrode thickness [m]": l_p, | ||
"Separator thickness [m]": l_s, | ||
"Lower voltage cut-off [V]": 3.105, | ||
"Upper voltage cut-off [V]": 4.7, | ||
"Maximum concentration in negative electrode [mol.m-3]": 25000, | ||
"Maximum concentration in positive electrode [mol.m-3]": 50000, | ||
"Initial concentration in negative electrode [mol.m-3]": 12500, | ||
"Initial concentration in positive electrode [mol.m-3]": 25000, | ||
"Negative electrode surface area density [m-1]": 180000.0, | ||
"Positive electrode surface area density [m-1]": 150000.0, | ||
"Typical current [A]": I_app, | ||
} | ||
) | ||
|
||
param.process_model(model) | ||
param.process_geometry(geometry) | ||
s_var = pybamm.standard_spatial_vars | ||
var_pts = {s_var.x_n: 5, s_var.x_s: 5, s_var.x_p: 5, | ||
s_var.r_n: 5, s_var.r_p: 10} | ||
# set mesh | ||
mesh = pybamm.Mesh(geometry, model.default_submesh_types, var_pts) | ||
# discretise model | ||
disc = pybamm.Discretisation(mesh, model.default_spatial_methods) | ||
disc.process_model(model) | ||
# solve model | ||
t_eval = np.linspace(0, 0.2, 100) | ||
sol = model.default_solver.solve(model, t_eval) | ||
|
||
var = "Positive electrode average extent of lithiation" | ||
xpext = pybamm.ProcessedVariable(model.variables[var], | ||
sol.t, sol.y, mesh=mesh) | ||
var = "Negative electrode average extent of lithiation" | ||
xnext = pybamm.ProcessedVariable(model.variables[var], | ||
sol.t, sol.y, mesh=mesh) | ||
var = "X-averaged positive particle surface concentration" | ||
xpsurf = pybamm.ProcessedVariable(model.variables[var], | ||
sol.t, sol.y, mesh=mesh) | ||
var = "X-averaged negative particle surface concentration" | ||
xnsurf = pybamm.ProcessedVariable(model.variables[var], | ||
sol.t, sol.y, mesh=mesh) | ||
time = pybamm.ProcessedVariable(model.variables["Time [h]"], | ||
sol.t, sol.y, mesh=mesh) | ||
|
||
# Coulomb counting | ||
time_hours = time(sol.t) | ||
dc_time = np.around(time_hours[-1], 3) | ||
# Capacity mAh | ||
cap = np.absolute(I_app * 1000 * dc_time) | ||
cap_time = np.absolute(I_app * 1000 * time_hours) | ||
thicknesses = np.linspace(1.0, 2.5, 11) * l_p | ||
for l_n in thicknesses: | ||
e_ratio = np.around(l_n / l_p, 3) | ||
# Dimensions | ||
h = 0.137 | ||
w = 0.207 / factor | ||
A = h * w | ||
l_s = 2.5e-5 | ||
l1d = (l_n + l_p + l_s) | ||
vol = h * w * l1d | ||
vol_cm3 = vol * 1e6 | ||
tot_cap = 0.0 | ||
tot_time = 0.0 | ||
fig, axes = plt.subplots(1, 2, sharey=True) | ||
I_mag = 1.01 / factor | ||
print('*' * 30) | ||
for enum, I_app in enumerate([-1.0, 1.0]): | ||
I_app *= I_mag | ||
# load model | ||
model = pybamm.lithium_ion.SPMe() | ||
# create geometry | ||
geometry = model.default_geometry | ||
# load parameter values and process model and geometry | ||
param = model.default_parameter_values | ||
param.update( | ||
{"Electrode height [m]": h, | ||
"Electrode width [m]": w, | ||
"Negative electrode thickness [m]": l_n, | ||
"Positive electrode thickness [m]": l_p, | ||
"Separator thickness [m]": l_s, | ||
"Lower voltage cut-off [V]": 2.8, | ||
"Upper voltage cut-off [V]": 4.7, | ||
"Maximum concentration in negative electrode [mol.m-3]": 25000, | ||
"Maximum concentration in positive electrode [mol.m-3]": 50000, | ||
"Initial concentration in negative electrode [mol.m-3]": 12500, | ||
"Initial concentration in positive electrode [mol.m-3]": 25000, | ||
"Negative electrode surface area density [m-1]": 180000.0, | ||
"Positive electrode surface area density [m-1]": 150000.0, | ||
"Typical current [A]": I_app, | ||
} | ||
) | ||
param.process_model(model) | ||
param.process_geometry(geometry) | ||
s_var = pybamm.standard_spatial_vars | ||
var_pts = {s_var.x_n: 5, s_var.x_s: 5, s_var.x_p: 5, | ||
s_var.r_n: 5, s_var.r_p: 10} | ||
# set mesh | ||
mesh = pybamm.Mesh(geometry, model.default_submesh_types, var_pts) | ||
# discretise model | ||
disc = pybamm.Discretisation(mesh, model.default_spatial_methods) | ||
disc.process_model(model) | ||
# solve model | ||
t_eval = np.linspace(0, 0.2, 100) | ||
sol = model.default_solver.solve(model, t_eval) | ||
var = "Positive electrode average extent of lithiation" | ||
xpext = pybamm.ProcessedVariable(model.variables[var], | ||
sol.t, sol.y, mesh=mesh) | ||
var = "Negative electrode average extent of lithiation" | ||
xnext = pybamm.ProcessedVariable(model.variables[var], | ||
sol.t, sol.y, mesh=mesh) | ||
var = "X-averaged positive particle surface concentration" | ||
xpsurf = pybamm.ProcessedVariable(model.variables[var], | ||
sol.t, sol.y, mesh=mesh) | ||
var = "X-averaged negative particle surface concentration" | ||
xnsurf = pybamm.ProcessedVariable(model.variables[var], | ||
sol.t, sol.y, mesh=mesh) | ||
time = pybamm.ProcessedVariable(model.variables["Time [h]"], | ||
sol.t, sol.y, mesh=mesh) | ||
# Coulomb counting | ||
time_hours = time(sol.t) | ||
dc_time = np.around(time_hours[-1], 3) | ||
# Capacity mAh | ||
cap = np.absolute(I_app * 1000 * dc_time) | ||
cap_time = np.absolute(I_app * 1000 * time_hours) | ||
axes[enum].plot(cap_time, | ||
xnext(sol.t), 'r-', label='Average Neg') | ||
axes[enum].plot(cap_time, | ||
xpext(sol.t), 'b-', label='Average Pos') | ||
axes[enum].plot(cap_time, | ||
xnsurf(sol.t), 'r--', label='Surface Neg') | ||
axes[enum].plot(cap_time, | ||
xpsurf(sol.t), 'b--', label='Surface Pos') | ||
axes[enum].set_xlabel('Capacity [mAh]') | ||
handles, labels = axes[enum].get_legend_handles_labels() | ||
axes[enum].legend(handles, labels) | ||
if I_app < 0.0: | ||
axes[enum].set_ylabel('Extent of Lithiation, Elecrode Ratio: ' | ||
+ str(e_ratio)) | ||
axes[enum].title.set_text('Charge') | ||
else: | ||
axes[enum].title.set_text('Discharge') | ||
print('Applied Current', I_app, 'A', 'Time', | ||
dc_time, 'hrs', 'Capacity', cap, 'mAh') | ||
tot_cap += cap | ||
tot_time += dc_time | ||
|
||
axes[enum].plot(cap_time, | ||
xnext(sol.t), 'r-', label='Average Neg') | ||
axes[enum].plot(cap_time, | ||
xpext(sol.t), 'b-', label='Average Pos') | ||
axes[enum].plot(cap_time, | ||
xnsurf(sol.t), 'r--', label='Surface Neg') | ||
axes[enum].plot(cap_time, | ||
xpsurf(sol.t), 'b--', label='Surface Pos') | ||
axes[enum].set_xlabel('Capacity [mAh]') | ||
plt.legend() | ||
if I_app < 0.0: | ||
axes[enum].set_ylabel('Extent of Lithiation') | ||
axes[enum].title.set_text('Charge') | ||
else: | ||
axes[enum].title.set_text('Discharge') | ||
print('Applied Current', I_app, 'A', 'Time', | ||
dc_time, 'hrs', 'Capacity', cap, 'mAh') | ||
tot_cap += cap | ||
tot_time += dc_time | ||
print('Anode : Cathode thickness', e_ratio) | ||
print('Total Charge/Discharge Time', tot_time, 'hrs') | ||
print('Total Capacity', np.around(tot_cap, 3), 'mAh') | ||
specific_cap = np.around(tot_cap, 3) / vol_cm3 | ||
print('Total Capacity', specific_cap, 'mAh.cm-3') | ||
capacities.append(tot_cap) | ||
specific_capacities.append(specific_cap) | ||
|
||
print('Total Charge/Discharge Time', tot_time, 'hrs') | ||
print('Total Capacity', np.around(tot_cap, 3), 'mAh') | ||
print('Total Capacity', np.around(tot_cap, 3) / vol_cm3, 'mAh.cm-3') | ||
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True) | ||
ax1.plot(thicknesses / l_p, capacities) | ||
ax2.plot(thicknesses / l_p, specific_capacities) | ||
ax1.set_ylabel('Capacity [mAh]') | ||
ax2.set_ylabel('Specific Capacity [mAh.cm-3]') | ||
ax2.set_xlabel('Anode : Cathode thickness') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters