Skip to content

Commit

Permalink
CLN/ASV clean-up frame stat ops benchmarks (pandas-dev#17205)
Browse files Browse the repository at this point in the history
  • Loading branch information
jorisvandenbossche authored and jowens committed Sep 20, 2017
1 parent 421dcf4 commit d5733ee
Showing 1 changed file with 22 additions and 78 deletions.
100 changes: 22 additions & 78 deletions asv_bench/benchmarks/stat_ops.py
Original file line number Diff line number Diff line change
@@ -1,92 +1,36 @@
from .pandas_vb_common import *


class stat_ops_frame_mean_float_axis_0(object):
goal_time = 0.2

def setup(self):
self.df = DataFrame(np.random.randn(100000, 4))
self.dfi = DataFrame(np.random.randint(1000, size=self.df.shape))

def time_stat_ops_frame_mean_float_axis_0(self):
self.df.mean()


class stat_ops_frame_mean_float_axis_1(object):
goal_time = 0.2

def setup(self):
self.df = DataFrame(np.random.randn(100000, 4))
self.dfi = DataFrame(np.random.randint(1000, size=self.df.shape))

def time_stat_ops_frame_mean_float_axis_1(self):
self.df.mean(1)


class stat_ops_frame_mean_int_axis_0(object):
goal_time = 0.2

def setup(self):
self.df = DataFrame(np.random.randn(100000, 4))
self.dfi = DataFrame(np.random.randint(1000, size=self.df.shape))

def time_stat_ops_frame_mean_int_axis_0(self):
self.dfi.mean()


class stat_ops_frame_mean_int_axis_1(object):
goal_time = 0.2
def _set_use_bottleneck_False():
try:
pd.options.compute.use_bottleneck = False
except:
from pandas.core import nanops
nanops._USE_BOTTLENECK = False

def setup(self):
self.df = DataFrame(np.random.randn(100000, 4))
self.dfi = DataFrame(np.random.randint(1000, size=self.df.shape))

def time_stat_ops_frame_mean_int_axis_1(self):
self.dfi.mean(1)


class stat_ops_frame_sum_float_axis_0(object):
goal_time = 0.2

def setup(self):
self.df = DataFrame(np.random.randn(100000, 4))
self.dfi = DataFrame(np.random.randint(1000, size=self.df.shape))

def time_stat_ops_frame_sum_float_axis_0(self):
self.df.sum()


class stat_ops_frame_sum_float_axis_1(object):
class FrameOps(object):
goal_time = 0.2

def setup(self):
self.df = DataFrame(np.random.randn(100000, 4))
self.dfi = DataFrame(np.random.randint(1000, size=self.df.shape))
param_names = ['op', 'use_bottleneck', 'dtype', 'axis']
params = [['mean', 'sum', 'median'],
[True, False],
['float', 'int'],
[0, 1]]

def time_stat_ops_frame_sum_float_axis_1(self):
self.df.sum(1)
def setup(self, op, use_bottleneck, dtype, axis):
if dtype == 'float':
self.df = DataFrame(np.random.randn(100000, 4))
elif dtype == 'int':
self.df = DataFrame(np.random.randint(1000, size=(100000, 4)))

if not use_bottleneck:
_set_use_bottleneck_False()

class stat_ops_frame_sum_int_axis_0(object):
goal_time = 0.2

def setup(self):
self.df = DataFrame(np.random.randn(100000, 4))
self.dfi = DataFrame(np.random.randint(1000, size=self.df.shape))

def time_stat_ops_frame_sum_int_axis_0(self):
self.dfi.sum()


class stat_ops_frame_sum_int_axis_1(object):
goal_time = 0.2

def setup(self):
self.df = DataFrame(np.random.randn(100000, 4))
self.dfi = DataFrame(np.random.randint(1000, size=self.df.shape))
self.func = getattr(self.df, op)

def time_stat_ops_frame_sum_int_axis_1(self):
self.dfi.sum(1)
def time_op(self, op, use_bottleneck, dtype, axis):
self.func(axis=axis)


class stat_ops_level_frame_sum(object):
Expand Down

0 comments on commit d5733ee

Please sign in to comment.