Skip to content

josenavas/labman

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

labman

lab manager for plate maps and sequence flows

Install

Labman relies on the Qiita database. You will need first to install Qiita in a different environment (Qiita is Python 2 only, while labman is Python 3) and create the Qiita database using the [Qiita installation instructions] (https://github.com/biocore/qiita/blob/master/INSTALL.md).

Once Qiita is installed, create a new, empty conda environment for labman.
Source this environment and install labman; start by first installing the qiita_client library:

pip install https://github.com/qiita-spots/qiita_client/archive/master.zip

and then cloning the labman repository:

git clone https://github.com/jdereus/labman.git

You can then install labman by simply running:

pip install -e .

Configure labman by running labman config and answer to the configuration questions:

labman config
Path to the configuration file [~/.labman.cfg]:
Main configuration:
Test environment [True]:
Postgres configuration:
Postgres host [localhost]:
Postgres port [5432]:
Database name [qiita]:
Postgres user [labman]:
Postgres user password []:
Postgres admin user [labman]:
Postgres admin user password []:
Qiita configuration (for testing purposes):
Qiita server certificate []: /PATH/TO/qiita_core/support_files/server.crt

Finally, apply the SQL patches in the Qiita database so the labman structures are created:

psql -d qiita_test -f labman/db/support_files/db_patch.sql
psql -d qiita_test -f labman/db/support_files/db_patch_manual.sql

Labman is now ready to run. Start the labman server with:

labman start_webserver

If it is running successfully, you will see the message Labman started on port 8080.

About

new lab manager

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 56.1%
  • HTML 34.7%
  • SQLPL 4.8%
  • JavaScript 4.1%
  • CSS 0.3%