Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

#35 non obvious possibilities of python syntax 鲜为人知的python语法 #56

Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,279 @@
# Non-obvious possibilities of python syntax
# 鲜为人知的 python 语法

鲜为人知的python语法 [阅读原文 »](https://medium.com/@chipiga86/non-obvious-possibilities-of-python-syntax-a95a7210aaaf)


Hi! All of us (ok not all :)) know [python](https://www.python.org/) as wide-used, simple-to-read, easy-to-start programming language.

所有人(好吧,不是所有人)都知道 [python](https://www.python.org/) 是一门用途广泛,易读,而且容易入门的编程语言。
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

顿号是不是好一些

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ok搞定


But at the same time python syntax allows to make really strange things.
但同时 python 语法也允许我们做一些很奇怪的事情。

## Rewrite multiline function with lambda
## 使用 lambda 表达式重写多行函数

As it’s known python lambda doesn’t support multiline code. But it can be simulated.
众所周知 python 的 lambda 表达式不支持多行代码。但是可以模拟出多行代码的效果。

```
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

代码块后面加上语言类型说明
这样可以对代码中的关键字进行高亮

def f():
x = 'string'
if x.endswith('g'):
x = x[:-1]
r = ''
for i in xrange(len(x)):
if x[i] != 'i':
r += x[i]
return r
f()
-> 'strn'
```

Sounds strange but above function can be replaced with **lambda**-function:
虽然看起来很奇怪,但是上面的函数可以使用下面的 **lambda** 表达式函数代替:

```
(lambda: ([x for x in ['string']], x.endswith('g') and [x for x in [x[:-1]]], [r for r in ['']], [x[i] != 'i' and [r for r in [r+x[i]]] for i in xrange(len(x))], r)[-1])()
-> 'strn'
```

Never do that in production code :)
永远不要在生产环境写这样的代码 :)

## Ternary operator
## 三元运算符

Modern python gives you simple intuitive syntax:
现代的 python 提供了更简便的语法:

```
b if a else c
```


But it also can be rewritten via:
也可以通过下面的方式重写:

```
(a and [b] or [c])[0]

(b, c)[not a]
```

Btw, next variant is incorrect:
顺便说一下,下面的变体是错误的:

```
a and b or c
True and [] or [1] -> [1], but: [] if True else [1] -> []
```

## Remove repeated symbols via list comprehension
## 通过列表推导式移除重复的元素

Let’s transform string `x = 'tteesstt'` to `'test'`.
让我们来把字符串 `x = 'tteesstt'` 转换成 `'test'` 吧。

1. compare a symbol with previous in original string:
1. 在原字符串中和上一个字符比较:
`''.join(['' if i and j == x[i-1] else j for i,j in enumerate(x)])`
2. save previous symbol in temporary variable:
2. 把前一个字符保存到临时变量中:

```
''.join([('' if i == a else i, [a for a in [i]])[0] for a in [''] for i in x])
''.join([('' if i == a.pop() else i, a.append(i))[0] for a in [['']] for i in x])
```

3. compare a symbol with previous in new string:
3. 在新字符串中和上一个字符比较:

```
[(not r.endswith(i) and [r for r in [r+i]], r)[-1] for r in [''] for i in x][-1]
```

4. via reduce & lambda:
4. 通过 reduce 函数和 lambda 表达式:

```
reduce(lambda a, b: a if a.endswith(b) else a + b, x)
```

## Fibonacci via list comprehension
## 通过列表推导式获得斐波拉契数列

1. save temporary values in list:
1. 把中间值保存在列表中

```
[(lambda: (l[-1], l.append(l[-1] + l[-2]))[0])() for l in [[1, 1]] for x in xrange(19)]
[(l[-1], l.append(l[-1] + l[-2]))[0] for l in [[1, 1]] for x in xrange(19)]
```

2. save temporary values in dict:
2. 把中间值保存到字典中:

```
[i for x in [(lambda: (l['a'], l.update({'a': l['a'] + l['b']}), l['b'], l.update({'b': l['a'] + l['b']}))[::2])() for l in [{'a': 1, 'b': 1}] for x in xrange(10)] for i in x]
[i for x in [(l['a'], l.update({'a': l['a'] + l['b']}), l['b'], l.update({'b': l['a'] + l['b']}))[::2] for l in [{'a': 1, 'b': 1}] for x in xrange(10)] for i in x]
```

3. via reduce & lambda:
3. 通过 reduce 函数和 lambda 表达式:

```
reduce(lambda a, b: a + [a[-1] + a[-2]], xrange(10), [1, 1])
reduce(lambda a, b: a.append(a[-1] + a[-2]) or a, xrange(10), [1, 1])
```

4. the quickest variant:
4. 速度最快的变体:

```
[l.append(l[-1] + l[-2]) or l for l in [[1, 1]] for x in xrange(10)][0]
```

## Eternal cycle with list comprehension
## 使用列表推导式产生死循环
`[a.append(b) for a in [[None]] for b in a]`

## List slice tricks
## 列表切片技巧

1. copy list:
1. 复制列表:

```
l = [1, 2, 3]
m = l[:]
m
-> [1, 2, 3]
```

2. remove/replace any number of elements:
2. 移除/替换 列表中的任意元素:
```
l = [1, 2, 3]
l[1:-1] = [4, 5, 6, 7]
l
-> [1, 4, 5, 6, 7, 3]
```

3. add elements to begin of list:
3. 在列表的开头添加元素:

```
l = [1, 2, 3]
l[:0] = [4, 5, 6]
l
-> [4, 5, 6, 1, 2, 3]
```

4. add elements to end of list:
4. 在列表的尾部添加元素:

```
l = [1, 2, 3]
l[-1:] = [l[-1], 4, 5, 6]
l
-> [1, 2, 3, 4, 5, 6]
```

5. reverse list:
5. 反转列表:

```
l = [1, 2, 3]
l[:] = l[::-1]
```

## Replace method byte code
## 替换方法字节码

Python prohibits to replace instance method, making it as read-only property:
Python 阻止替换类实例中的方法,因为 python 给类实例中的方法赋予了只读属性:

```
class A(object):
def x(self):
print "hello"
a = A()
def y(self):
print "world"
a.x.im_func = y
-> TypeError: readonly attribute
```

But it can be replaced on byte-code level:
但是可以在字节码的层面上进行替换:

```
a.x.im_func.func_code = y.func_code
a.x()
-> 'world'
```

**Note!** It has influence not only to current instance but to class (if to be precise to function which is bound with class) and all other instances too:
**注意!** 这不仅对当前的实例有影响,而且对整个类都有影响(准确的说是与这个类绑定的函数)(译者注:此处应该是笔误,推测作者原意是:准确的说是与这个函数绑定的所有类),并且所有其他的实例也会受到影响:

```
new_a = A()
new_a.x()
-> 'world'
```

## Mutable object as default function argument
## 让可变元素作为函数参数默认值

To assign mutable object as default value to function argument is very dangerous and there are a lot of tricky questions on interviews about that. But it can be helpful as cache mechanism.
把可变对象作为函数参数的默认值是非常危险的一件事,并且在面试中有大量关于这方面棘手的面试问题。但这一点对于缓存机制非常有帮助。

1. Factorial:
2. 阶乘函数:

```
def f(n, c={}):
if n in c:
return c[n]
if (n < 2):
r = 1
else:
r = n * f(n - 1)
c[n] = r
return r
f(10)
-> 3628800
f.func_defaults
({1: 1,
2: 2,
3: 6,
4: 24,
5: 120,
6: 720,
7: 5040,
8: 40320,
9: 362880,
10: 3628800},)
```


2. Fibonacci:
2. 斐波拉契数列:

```
def fib(n, c={}):
if n in c:
return c[n]
if (n < 2):
r = 1
else:
r = fib(n - 2) + fib(n - 1)
c[n] = r
return r
fib(10)
-> 89
fib.func_defaults[0].values()
-> [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
```