forked from espressomd/espresso
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
tests: Check reaction algorithm more thoroughly
The test case re-uses the reaction_ensemble_complex_reaction.py sample. Co-authored-by: Jonas Landsgesell <[email protected]>
- Loading branch information
1 parent
e07a1d1
commit 45da5ab
Showing
2 changed files
with
131 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
# | ||
# Copyright (C) 2013-2022 The ESPResSo project | ||
# | ||
# This file is part of ESPResSo. | ||
# | ||
# ESPResSo is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# ESPResSo is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU General Public License | ||
# along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
# | ||
|
||
import unittest as ut | ||
import numpy as np | ||
import scipy.optimize | ||
import espressomd | ||
import espressomd.reaction_methods | ||
|
||
|
||
class Test(ut.TestCase): | ||
|
||
""" | ||
Test the reaction ensemble for reaction 2A + 3B <-> 4C + 1D + 3E. | ||
""" | ||
|
||
system = espressomd.System(box_l=3 * [35.]) | ||
system.time_step = 0.02 | ||
system.cell_system.skin = 0.4 | ||
np.random.seed(seed=42) | ||
|
||
def test_equilibrium_concentrations(self): | ||
# reactant and product types | ||
type_A = 0 | ||
type_B = 1 | ||
type_C = 2 | ||
type_D = 3 | ||
type_E = 4 | ||
types = [type_A, type_B, type_C, type_D, type_E] | ||
# reactant and product stoichiometric coefficients | ||
nu_A = -2 | ||
nu_B = -3 | ||
nu_C = 4 | ||
nu_D = 1 | ||
nu_E = 3 | ||
nu_s = [nu_A, nu_B, nu_C, nu_D, nu_E] | ||
# reaction constant | ||
K = 0.001 | ||
# reference concentration: 1 mol/l | ||
c_ref = 1.0 | ||
# simulation units: 1 sigma = 3.55 Angstrom | ||
conv_sim_unit_to_mol_per_l = 37.1 | ||
Gamma = K * (c_ref / conv_sim_unit_to_mol_per_l)**np.sum(nu_s) | ||
volume = self.system.volume() | ||
|
||
# setup N0 batches of reactants | ||
N0 = 30 | ||
self.system.part.add( | ||
pos=np.random.random((-nu_A * N0, 3)) * self.system.box_l, | ||
type=-nu_A * N0 * [type_A]) | ||
self.system.part.add( | ||
pos=np.random.random((-nu_B * N0, 3)) * self.system.box_l, | ||
type=-nu_B * N0 * [type_B]) | ||
|
||
# use an exclusion radius of 0 to simulate an ideal gas | ||
RE = espressomd.reaction_methods.ReactionEnsemble( | ||
kT=1., exclusion_range=0., seed=42) | ||
|
||
RE.add_reaction( | ||
gamma=Gamma, reactant_types=[type_A, type_B], | ||
reactant_coefficients=[abs(nu_A), abs(nu_B)], | ||
product_types=[type_C, type_D, type_E], | ||
product_coefficients=[nu_C, nu_D, nu_E], | ||
default_charges={type_A: 0, type_B: 0, type_C: 0, type_D: 0, type_E: 0}) | ||
|
||
# Set the hidden particle type to the lowest possible number to speed | ||
# up the simulation | ||
RE.set_non_interacting_type(type=max(types) + 1) | ||
|
||
# warmup | ||
RE.reaction(reaction_steps=50) | ||
|
||
numbers = {type_A: [], type_B: [], type_C: [], type_D: [], type_E: []} | ||
for _ in range(40): | ||
RE.reaction(reaction_steps=6) | ||
for key in types: | ||
numbers[key].append(self.system.number_of_particles(type=key)) | ||
|
||
def calculate_K(c_s, nu_s): | ||
return np.prod( | ||
[(c_i / c_ref)**nu_i for c_i, nu_i in zip(c_s, nu_s)]) | ||
|
||
def equations(concentrations): | ||
c_A, c_B, c_C, c_D, c_E = concentrations | ||
eq1 = K - calculate_K(concentrations, nu_s) | ||
eq2 = N0 - (1.0 / abs(nu_A) * c_A / conv_sim_unit_to_mol_per_l + | ||
1.0 / nu_D * c_D / conv_sim_unit_to_mol_per_l) * volume | ||
eq3 = c_A / c_B - float(nu_A) / float(nu_B) | ||
eq4 = c_C / c_D - float(nu_C) / float(nu_D) | ||
eq5 = c_C / c_E - float(nu_C) / float(nu_E) | ||
return (eq1, eq2, eq3, eq4, eq5) | ||
|
||
concentrations_sim = { | ||
type_i: np.mean(n_i) / volume * conv_sim_unit_to_mol_per_l | ||
for type_i, n_i in numbers.items()} | ||
concentrations_analytic = dict(zip(types, scipy.optimize.fsolve( | ||
equations, list(concentrations_sim.values())))) | ||
|
||
K_sim = calculate_K(concentrations_sim.values(), nu_s) | ||
N0_sim = (1.0 / abs(nu_A) * concentrations_sim[type_A] + 1.0 / nu_D * | ||
concentrations_sim[type_D]) / conv_sim_unit_to_mol_per_l * volume | ||
|
||
err_msg = "Concentration of species {} doesn't match analytical result" | ||
for key in types: | ||
self.assertAlmostEqual(concentrations_sim[key], | ||
concentrations_analytic[key], | ||
delta=1e-3, | ||
msg=err_msg.format(key)) | ||
self.assertAlmostEqual(K_sim, K, delta=1e-3) | ||
self.assertAlmostEqual(N0_sim, N0, delta=1e-3) | ||
|
||
|
||
if __name__ == "__main__": | ||
ut.main() |