Chih-Chung Hsu, et. al.
Official implementation of our DCSN-radar object detector. Our source is based on RODNet, thanks for the authors' contribution and great effort.
Fig.1. Training loss curves of the proposed DCSN and RODNet comparison (DCSN: Red, RODNet: Orange)Create a conda environment for dcsn
conda create -n dcsn python=3.7 -y
conda activate dcsn
Install pytorch.
conda install pytorch torchvision -c pytorch
Install cruw-devkit
package (needed for accessing the dataset)
Please refer to cruw-devit
repository for detailed instructions.
git clone https://github.com/yizhou-wang/cruw-devkit.git
cd cruw-devkit
pip install -e .
cd ..
Setup our DCSN package (same as RODNet does).
pip install -e .
Note that you should set the configuration files like configs/DCSN.py to adopt DCSN architecture.
python tools/prepare_dataset/prepare_data.py \
--config configs/<CONFIG_FILE> \
--data_root <DATASET_ROOT> \
--split train,test \
--out_data_dir data/<DATA_FOLDER_NAME>
python tools/train.py --config configs/<CONFIG_FILE> \
--data_dir data/<DATA_FOLDER_NAME> \
--log_dir checkpoints/
python tools/test.py --config configs/<CONFIG_FILE> \
--data_dir data/<DATA_FOLDER_NAME> \
--checkpoint <CHECKPOINT_PATH> \
--res_dir results/