Skip to content

jbdj-star/Graph-U-Nets

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTorch Implementation of Graph U-Nets

Created by Hongyang Gao @ Iowa State University, and Shuiwang Ji @ Texas A&M University.

About

PyTorch implementation of Graph U-Nets. Check http://proceedings.mlr.press/v97/gao19a/gao19a.pdf for more information.

Methods

Graph Pooling Layer

gPool

Graph Unpooling Layer

gPool

Graph U-Net

gPool

Installation

Type

./run_GNN.sh DATA FOLD GPU

to run on dataset using fold number (1-10).

You can run

./run_GNN.sh DD 0 0

to run on DD dataset with 10-fold cross validation on GPU #0.

Code

The detail implementation of Graph U-Net is in src/utils/ops.py.

Datasets

Check the "data/README.md" for the format.

Results

Models DD IMDBMULTI PROTEINS
PSCN 76.3 ± 2.6% 45.2 ± 2.8% 75.9 ± 2.8%
DIFFPOOL 80.6% - 76.3%
SAGPool 76.5% - 71.9%
GIN 82.0 ± 2.7% 52.3 ± 2.8% 76.2 ± 2.8%
g-U-Net 83.0 ± 2.2% 56.7 ± 2.9% 78.7 ± 4.2%

Reference

If you find the code useful, please cite our paper:

@inproceedings{gao2019graph,
    title={Graph U-Nets},
    author={Gao, Hongyang and Ji, Shuiwang},
    booktitle={International Conference on Machine Learning},
    pages={2083--2092},
    year={2019}
}

About

Pytorch implementation of Graph U-Nets (ICML19)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 93.8%
  • Shell 6.2%