Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DeviceArray.__iter__ returns DeviceArrays, without host sync #8043

Merged
merged 1 commit into from
Nov 1, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions jax/_src/lax/lax.py
Original file line number Diff line number Diff line change
Expand Up @@ -919,7 +919,7 @@ def dynamic_slice(operand: Array, start_indices: Sequence[Array],
"""
start_indices = _dynamic_slice_indices(operand, start_indices)
return dynamic_slice_p.bind(operand, *start_indices,
slice_sizes=tuple(slice_sizes))
slice_sizes=core.canonicalize_shape(slice_sizes))

def dynamic_update_slice(operand: Array, update: Array,
start_indices: Array) -> Array:
Expand Down Expand Up @@ -1355,7 +1355,7 @@ def transpose(operand: Array, permutation: Sequence[int]) -> Array:
<https://www.tensorflow.org/xla/operation_semantics#transpose>`_
operator.
"""
permutation = tuple(permutation)
permutation = tuple(operator.index(d) for d in permutation)
if (permutation == tuple(range(np.ndim(operand)))
and isinstance(operand, (core.Tracer, xla.DeviceArray))):
return operand
Expand Down
16 changes: 16 additions & 0 deletions jax/_src/numpy/lax_numpy.py
Original file line number Diff line number Diff line change
Expand Up @@ -6695,6 +6695,22 @@ def _multi_slice(arr,
results.append(sliced)
return results

# The next two functions are related to iter(device_array), implemented here to
# avoid circular imports.
@jit
def _unstack(x):
return [lax.index_in_dim(x, i, keepdims=False) for i in range(x.shape[0])]
setattr(DeviceArray, "_unstack", _unstack)
def _chunk_iter(x, size):
if size > x.shape[0]:
yield x
else:
num_chunks, tail = divmod(x.shape[0], size)
for i in range(num_chunks):
yield lax.dynamic_slice_in_dim(x, i * size, size)
if tail:
yield lax.dynamic_slice_in_dim(x, num_chunks * size, tail)
setattr(DeviceArray, "_chunk_iter", _chunk_iter)

# Syntactic sugar for scatter operations.
class _IndexUpdateHelper:
Expand Down
36 changes: 26 additions & 10 deletions jax/interpreters/pxla.py
Original file line number Diff line number Diff line change
Expand Up @@ -622,21 +622,34 @@ def _sda_value(self):


def _sda__getitem__(self, idx):
self._check_if_deleted()
if not isinstance(idx, tuple):
cidx = (idx,) + (slice(None),) * (len(self.aval.shape) - 1)
else:
cidx = idx + (slice(None),) * (len(self.aval.shape) - len(idx))
try:
buf_idx = self.indices.index(cidx)
except ValueError:
# NOTE: Slow path, this will materialize the sharded array on a single
# device and use XLA's Gather to index into the resulting array.
return xla.DeviceArray.__getitem__(self, idx)
if self._npy_value is None:
try:
buf_idx = self.indices.index(cidx)
except ValueError:
buf_idx = None
if buf_idx is not None:
buf = self.device_buffers[buf_idx]
aval = ShapedArray(buf.xla_shape().dimensions(), self.aval.dtype)
return xla.make_device_array(aval, None, buf)
return super(self.__class__, self).__getitem__(idx)


def _sda__iter__(self):
if self.ndim == 0:
raise TypeError("iteration over a 0-d array") # same as numpy error
else:
self._check_if_deleted()
buf = self.device_buffers[buf_idx]
aval = ShapedArray(buf.xla_shape().dimensions(), self.aval.dtype)
return xla.make_device_array(aval, None, buf)
return (self[i] for i in range(self.shape[0]))

def _sda__reversed__(self):
if self.ndim == 0:
raise TypeError("iteration over a 0-d array") # same as numpy error
else:
return (self[i] for i in range(self.shape[0] - 1, -1, -1))


for sda in [_ShardedDeviceArray, pmap_lib.ShardedDeviceArray]:
Expand All @@ -647,6 +660,8 @@ def _sda__getitem__(self, idx):
setattr(sda, "block_until_ready", _sda_block_until_ready)
setattr(sda, "_value", property(_sda_value))
setattr(sda, "__getitem__", _sda__getitem__)
setattr(sda, "__iter__", _sda__iter__)
setattr(sda, "__reversed__", _sda__reversed__)

del (_sda_one_replica_buffer_indices, _sda_copy_to_host_async,
_sda_check_if_deleted, _sda_block_until_ready, _sda_value, _sda__getitem__)
Expand All @@ -659,6 +674,7 @@ def _sda__getitem__(self, idx):
ShardedDeviceArray = _ShardedDeviceArray



def _hashable_index(idx):
return tree_map(lambda x: (x.start, x.stop) if type(x) == slice else x,
idx)
Expand Down
7 changes: 2 additions & 5 deletions jax/interpreters/xla.py
Original file line number Diff line number Diff line change
Expand Up @@ -1596,15 +1596,12 @@ def __iter__(self):
if self.ndim == 0:
raise TypeError("iteration over a 0-d array") # same as numpy error
else:
return self._value.__iter__()
return (sl for chunk in self._chunk_iter(100) for sl in chunk._unstack())

setattr(device_array, "__iter__", __iter__)

def __reversed__(self):
if self.ndim == 0:
raise TypeError("iteration over a 0-d array")
else:
return reversed(self._value)
return iter(self[::-1])

setattr(device_array, "__reversed__", __reversed__)

Expand Down
2 changes: 1 addition & 1 deletion tests/api_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -2281,7 +2281,7 @@ def test_device_array_repr(self):
self.assertStartsWith(repr(rep), "DeviceArray")

def test_device_array_hash(self):
rep = jnp.ones(()) + 1.
rep = jnp.ones((1,)) + 1.
self.assertIsInstance(rep, jax.interpreters.xla.DeviceArray)
self.assertNotIsInstance(rep, collections.abc.Hashable)
with self.assertRaisesRegex(TypeError, 'unhashable type'):
Expand Down
11 changes: 11 additions & 0 deletions tests/lax_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
import numpy as np

import jax
import jax.numpy as jnp
from jax import core
from jax._src import dtypes
from jax import lax
Expand Down Expand Up @@ -1497,6 +1498,12 @@ def testDynamicSliceInDim(self):
x = rng((6, 7), np.int32)
np.testing.assert_equal(lax.dynamic_slice_in_dim(x, 2, 3), x[2:5])

def testDynamicSliceArraySliceSizes(self):
rng = jtu.rand_default(self.rng())
x = rng((6, 7), np.int32)
np.testing.assert_equal(lax.dynamic_slice(x, [2, 3], jnp.array([2, 2])),
x[2:4, 3:5])

@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_indices={}_update_shape={}".format(
jtu.format_shape_dtype_string(shape, dtype),
Expand Down Expand Up @@ -1556,6 +1563,10 @@ def testTranspose(self, shape, dtype, perm):
op = lambda x: lax.transpose(x, perm)
self._CompileAndCheck(op, args_maker)

def testTransposeWithArrayPermutation(self):
x = lax.transpose(np.ones((2, 3)), jnp.array([1, 0]))
self.assertEqual((3, 2), x.shape)

@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_perm={}".format(
jtu.format_shape_dtype_string(shape, dtype), perm),
Expand Down