Skip to content

Commit

Permalink
rapidsai#4783 Added nan_euclidean distance metric to pairwise_distanc…
Browse files Browse the repository at this point in the history
…es (rapidsai#4797)

Added nan_euclidean distance metric to pairwise_distances to calculate euclidean distance on data with missing values.

- Added Test cases for nan_euclidean_distance functions

Time taken to calculate:
#Data Points | Sklearn | Cuml
      10000       402 us     2.54 ms
      100k         23 ms      3.8 ms
      1M            760 ms    16 ms

GPU specifications:
- Tesla T4 15109MiB

CPU specifications:
- 11th gen intel i7, 8 cores, 16 Logical processors, 32 GB Memory
- Sklearn njobs as default

Authors:
  - https://github.com/Sreekiran096

Approvers:
  - Corey J. Nolet (https://github.com/cjnolet)

URL: rapidsai#4797
  • Loading branch information
SreekiranprasadV authored Aug 30, 2022
1 parent b6f9da7 commit d81465d
Show file tree
Hide file tree
Showing 3 changed files with 135 additions and 8 deletions.
2 changes: 2 additions & 0 deletions python/cuml/metrics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@
from cuml.metrics.cluster.entropy import cython_entropy as entropy
from cuml.metrics.pairwise_distances import pairwise_distances
from cuml.metrics.pairwise_distances import sparse_pairwise_distances
from cuml.metrics.pairwise_distances import nan_euclidean_distances
from cuml.metrics.pairwise_distances import PAIRWISE_DISTANCE_METRICS
from cuml.metrics.pairwise_distances import PAIRWISE_DISTANCE_SPARSE_METRICS
from cuml.metrics.pairwise_kernels import pairwise_kernels
Expand All @@ -59,6 +60,7 @@
"mutual_info_score",
"confusion_matrix",
"entropy",
"nan_euclidean_distances"
"pairwise_distances",
"sparse_pairwise_distances",
"pairwise_kernels",
Expand Down
132 changes: 128 additions & 4 deletions python/cuml/metrics/pairwise_distances.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,8 @@ from raft.common.handle cimport handle_t
from raft.common.handle import Handle
import cupy as cp
import numpy as np
import pandas as pd
import cudf
import scipy
import cupyx
import cuml.internals
Expand All @@ -34,6 +36,7 @@ from cuml.common.sparse_utils import is_sparse
from cuml.common.array_sparse import SparseCumlArray
from cuml.metrics.cluster.utils import prepare_cluster_metric_inputs
from cuml.metrics.distance_type cimport DistanceType
from cuml.thirdparty_adapters import _get_mask

cdef extern from "cuml/metrics/metrics.hpp" namespace "ML::Metrics":
void pairwise_distance(const handle_t &handle, const double *x,
Expand Down Expand Up @@ -78,7 +81,8 @@ PAIRWISE_DISTANCE_METRICS = {
"jensenshannon": DistanceType.JensenShannon,
"hamming": DistanceType.HammingUnexpanded,
"kldivergence": DistanceType.KLDivergence,
"russellrao": DistanceType.RusselRaoExpanded
"russellrao": DistanceType.RusselRaoExpanded,
"nan_euclidean": DistanceType.L2Expanded
}

PAIRWISE_DISTANCE_SPARSE_METRICS = {
Expand Down Expand Up @@ -117,9 +121,6 @@ def _determine_metric(metric_str, is_sparse=False):
if metric_str == 'haversine':
raise ValueError(" The metric: '{}', is not supported at this time."
.format(metric_str))
elif metric_str == 'nan_euclidean':
raise ValueError(" The metric: '{}', is not supported at this time."
.format(metric_str))

if not(is_sparse) and (metric_str not in PAIRWISE_DISTANCE_METRICS):
if metric_str in PAIRWISE_DISTANCE_SPARSE_METRICS:
Expand All @@ -136,6 +137,126 @@ def _determine_metric(metric_str, is_sparse=False):
return PAIRWISE_DISTANCE_METRICS[metric_str]


def nan_euclidean_distances(
X, Y=None, *, squared=False, missing_values=cp.nan
):
"""Calculate the euclidean distances in the presence of missing values.
Compute the euclidean distance between each pair of samples in X and Y,
where Y=X is assumed if Y=None. When calculating the distance between a
pair of samples, this formulation ignores feature coordinates with a
missing value in either sample and scales up the weight of the remaining
coordinates:
dist(x,y) = sqrt(weight * sq. distance from present coordinates)
where,
weight = Total # of coordinates / # of present coordinates
For example, the distance between ``[3, na, na, 6]`` and ``[1, na, 4, 5]``
is:
.. math::
\\sqrt{\\frac{4}{2}((3-1)^2 + (6-5)^2)}
If all the coordinates are missing or if there are no common present
coordinates then NaN is returned for that pair.
Parameters
----------
X : Dense matrix of shape (n_samples_X, n_features)
Acceptable formats: cuDF DataFrame, Pandas DataFrame, NumPy ndarray,
cuda array interface compliant array like CuPy.
Y : Dense matrix of shape (n_samples_Y, n_features), default=None
Acceptable formats: cuDF DataFrame, Pandas DataFrame, NumPy ndarray,
cuda array interface compliant array like CuPy.
squared : bool, default=False
Return squared Euclidean distances.
missing_values : np.nan or int, default=np.nan
Representation of missing value.
Returns
-------
distances : ndarray of shape (n_samples_X, n_samples_Y)
Returns the distances between the row vectors of `X`
and the row vectors of `Y`.
"""

if isinstance(X, cudf.DataFrame) or isinstance(X, pd.DataFrame):
if (X.isnull().any()).any():
X.fillna(0, inplace=True)

if isinstance(Y, cudf.DataFrame) or isinstance(Y, pd.DataFrame):
if (Y.isnull().any()).any():
Y.fillna(0, inplace=True)

X_m, n_samples_x, n_features_x, dtype_x = \
input_to_cuml_array(X, order="K", check_dtype=[np.float32, np.float64])

if Y is None:
Y = X_m

Y_m, n_samples_y, n_features_y, dtype_y = \
input_to_cuml_array(
Y, order=X_m.order, convert_to_dtype=dtype_x,
check_dtype=[dtype_x])

X_m = cp.asarray(X_m)
Y_m = cp.asarray(Y_m)

# Get missing mask for X
missing_X = _get_mask(X_m, missing_values)

# Get missing mask for Y
missing_Y = missing_X if Y is X else _get_mask(Y_m, missing_values)

# set missing values to zero
X_m[missing_X] = 0
Y_m[missing_Y] = 0

# Adjust distances for sqaured
if X_m.shape == Y_m.shape:
if (X_m == Y_m).all():
distances = cp.asarray(pairwise_distances(
X_m, metric="sqeuclidean"))
else:
distances = cp.asarray(pairwise_distances(
X_m, Y_m, metric="sqeuclidean"))
else:
distances = cp.asarray(pairwise_distances(
X_m, Y_m, metric="sqeuclidean"))

# Adjust distances for missing values
XX = X_m * X_m
YY = Y_m * Y_m
distances -= cp.dot(XX, missing_Y.T)
distances -= cp.dot(missing_X, YY.T)

cp.clip(distances, 0, None, out=distances)

if X_m is Y_m:
# Ensure that distances between vectors and themselves are set to 0.0.
# This may not be the case due to floating point rounding errors.
cp.fill_diagonal(distances, 0.0)

present_X = 1 - missing_X
present_Y = present_X if Y_m is X_m else ~missing_Y
present_count = cp.dot(present_X, present_Y.T)
distances[present_count == 0] = cp.nan

# avoid divide by zero
cp.maximum(1, present_count, out=present_count)
distances /= present_count
distances *= X_m.shape[1]

if not squared:
cp.sqrt(distances, out=distances)

return distances


@cuml.internals.api_return_array(get_output_type=True)
def pairwise_distances(X, Y=None, metric="euclidean", handle=None,
convert_dtype=True, metric_arg=2, **kwds):
Expand Down Expand Up @@ -225,6 +346,9 @@ def pairwise_distances(X, Y=None, metric="euclidean", handle=None,
handle = Handle() if handle is None else handle
cdef handle_t *handle_ = <handle_t*> <size_t> handle.getHandle()

if metric in ['nan_euclidean']:
return nan_euclidean_distances(X, Y, **kwds)

if metric in ['russellrao'] and not np.all(X.data == 1.):
warnings.warn("X was converted to boolean for metric {}"
.format(metric))
Expand Down
9 changes: 5 additions & 4 deletions python/cuml/tests/test_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,7 @@ def test_sklearn_search():
def test_accuracy(nrows, ncols, n_info, datatype):

use_handle = True
train_rows = np.int32(nrows*0.8)
train_rows = np.int32(nrows * 0.8)
X, y = make_classification(n_samples=nrows, n_features=ncols,
n_clusters_per_class=1, n_informative=n_info,
random_state=123, n_classes=5)
Expand Down Expand Up @@ -251,7 +251,7 @@ def test_rand_index_score(name, nrows):
def test_silhouette_score_batched(metric, chunk_divider, labeled_clusters):
X, labels = labeled_clusters
cuml_score = cu_silhouette_score(X, labels, metric=metric,
chunksize=int(X.shape[0]/chunk_divider))
chunksize=int(X.shape[0] / chunk_divider))
sk_score = sk_silhouette_score(X, labels, metric=metric)
assert_almost_equal(cuml_score, sk_score, decimal=2)

Expand Down Expand Up @@ -988,6 +988,7 @@ def test_pairwise_distances_sklearn_comparison(metric: str, matrix_size):
# For fp64, compare at 10 decimals, (5 places less than the ~15 max)
compare_precision = 10

print(X.shape, Y.shape, metric)
# Compare to sklearn, fp64
S = pairwise_distances(X, Y, metric=metric)

Expand Down Expand Up @@ -1076,7 +1077,7 @@ def test_pairwise_distances_one_dimension_order(metric: str):
cp.testing.assert_array_almost_equal(S, S2, decimal=compare_precision)


@pytest.mark.parametrize("metric", ["haversine", "nan_euclidean"])
@pytest.mark.parametrize("metric", ["haversine"])
def test_pairwise_distances_unsuppored_metrics(metric):
rng = np.random.RandomState(3)

Expand Down Expand Up @@ -1397,7 +1398,7 @@ def test_sparse_pairwise_distances_output_types(input_type, output_type):
@pytest.mark.parametrize("input_type", ["cudf", "cupy"])
@pytest.mark.parametrize("n_classes", [2, 5])
def test_hinge_loss(nrows, ncols, n_info, input_type, n_classes):
train_rows = np.int32(nrows*0.8)
train_rows = np.int32(nrows * 0.8)
X, y = make_classification(n_samples=nrows, n_features=ncols,
n_clusters_per_class=1, n_informative=n_info,
random_state=123, n_classes=n_classes)
Expand Down

0 comments on commit d81465d

Please sign in to comment.