Skip to content

Collection of Python utilities intended to be useful for machine learning research and experiments

License

Notifications You must be signed in to change notification settings

jakelevi1996/jutility

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

jutility

Collection of Python utilities intended to be useful for machine learning research and experiments.

Contents

Install with pip

The jutility package is available as a Python package on PyPI, and can be installed with pip using the following commands:

python -m pip install -U pip
python -m pip install -U jutility

Alternatively, jutility can be installed in "editable mode" from the GitHub repository:

git clone https://github.com/jakelevi1996/jutility.git
cd jutility
python -m pip install -U pip
python -m pip install -e .

Usage examples

plotting

Making a simple plot

import numpy as np
from jutility import plotting

x = np.linspace(-10, 10, 100, dtype=np.float32)
plotting.plot(
    plotting.Line(x, np.log(1 + np.exp(x)), label="Softplus", c="b"),
    plotting.Line(x, np.maximum(x, 0),      label="ReLU",     c="r", ls="--"),
    legend=True,
    plot_name="Softplus vs ReLU",
    dir_name="images",
)

import numpy as np
from jutility import plotting

rng = np.random.default_rng(0)
x = np.linspace(0, 2)
f = lambda x: x + 0.1 * rng.normal(size=x.shape)

plotting.plot(
    plotting.Line(x, f(x), c="b", marker="o", label="Blue data"),
    plotting.Line(x, np.exp(-f(x)), c="r", marker="o", label="Red data"),
    axis_properties=plotting.AxisProperties("x label", "y label"),
    legend=True,
    plot_name="Simple plot",
    dir_name="images",
)

Multiple lines in a single Line

import numpy as np
from jutility import plotting, util

n = 100
batch_size = 20
rng = np.random.default_rng(0)
noise = rng.normal(size=[n, batch_size])

x = np.linspace(-1, 4, n).reshape(n, 1)
y = np.exp(-x) + 0.1 * noise

plotting.plot(
    plotting.Line(x, y, alpha=0.2,       c="b", zorder=10),
    plotting.Line(x, np.mean(y, axis=1), c="r", zorder=20),
    plot_name="Multiple lines in a single Line",
    dir_name="images",
)

Vector fields (with optional normalisation)

import numpy as np
from jutility import plotting, util

n = 25
x = np.linspace(-2, 2, n).reshape(1, n)
y = np.linspace(-2, 2, n).reshape(n, 1)
dx = y - x
dy = x + y
mp = plotting.MultiPlot(
    plotting.Subplot(
        plotting.Quiver(x, y, dx, dy, zorder=10, normalise=False),
        axis_properties=plotting.AxisProperties(title="normalise=False")
    ),
    plotting.Subplot(
        plotting.Quiver(x, y, dx, dy, zorder=10, normalise=True),
        axis_properties=plotting.AxisProperties(title="normalise=True")
    ),
    figure_properties=plotting.FigureProperties(figsize=[10, 4])
)
mp.save(plot_name="Vector field", dir_name="images")

Shared colour bar

import numpy as np
from jutility import plotting

rng = np.random.default_rng(0)
z1 = rng.random((100, 200)) + 5
z2 = rng.random((100, 200)) + 2
v_min = min(z1.min(), z2.min())
v_max = max(z1.max(), z2.max())

colour_bar = plotting.ColourBar(v_min, v_max)

mp = plotting.MultiPlot(
    plotting.ImShow(c=z1, vmin=v_min, vmax=v_max),
    colour_bar,
    plotting.ImShow(c=z2, vmin=v_min, vmax=v_max),
    colour_bar,
    figure_properties=plotting.FigureProperties(
        num_rows=2,
        num_cols=2,
        width_ratios=[1, 0.2],
        tight_layout=False,
        title="Shared colour bar",
    ),
)
mp.save("Shared colour bar", dir_name="images")

More complex examples coming soon

cli script template

from jutility import plotting, util, cli

class ExampleClass:
    def __init__(self, p: float):
        self.p = p

def main(
    args: cli.ParsedArgs,
    x: float,
    y: str,
    z: bool,
):
    assert isinstance(x, float)
    assert isinstance(y, str)
    assert isinstance(z, bool)

    with cli.verbose:
        cn = cli.init_object(args, "ExampleClass")
        assert isinstance(cn, ExampleClass)

    print(x, y, z, cn.p, cli.get_args_summary(args), sep=" | ")

    ...

if __name__ == "__main__":
    parser = cli.Parser(
        cli.Arg("x", type=float, default=3.45),
        cli.Arg("y", type=str,   default="\"default\""),
        cli.Arg("z", action="store_true"),
        cli.ObjectArg(
            ExampleClass,
            cli.Arg("p", type=float, default=6.78),
        ),
    )
    args = parser.parse_args()

    with util.Timer("main"):
        main(args, **args.get_kwargs())

util

Coming soon

sweep

Coming soon

(in the meantime, see scripts/make_logo.py which made the logo above, and unit tests for util, plotting, and sweep)

Unit tests

To run all unit tests, install pytest (these tests have previously been run with pytest version 5.4.1), and run the following command (at the time of writing, this takes about 17 seconds to run 42 unit tests, because several unit tests involve saving images or GIFs to disk):

pytest

About

Collection of Python utilities intended to be useful for machine learning research and experiments

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages