Skip to content

Commit

Permalink
Add core::clone::CloneToUninit.
Browse files Browse the repository at this point in the history
This trait allows cloning DSTs, but is unsafe to implement and use
because it writes to possibly-uninitialized memory which must be of the
correct size, and must initialize that memory.

It is only implemented for `T: Clone` and `[T] where T: Clone`, but
additional implementations could be provided for specific `dyn Trait`
or custom-DST types.
  • Loading branch information
kpreid committed Jun 22, 2024
1 parent dbaf524 commit a4ca461
Show file tree
Hide file tree
Showing 3 changed files with 254 additions and 0 deletions.
186 changes: 186 additions & 0 deletions core/src/clone.rs
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,9 @@

#![stable(feature = "rust1", since = "1.0.0")]

use crate::mem::{self, MaybeUninit};
use crate::ptr;

/// A common trait for the ability to explicitly duplicate an object.
///
/// Differs from [`Copy`] in that [`Copy`] is implicit and an inexpensive bit-wise copy, while
Expand Down Expand Up @@ -204,6 +207,189 @@ pub struct AssertParamIsCopy<T: Copy + ?Sized> {
_field: crate::marker::PhantomData<T>,
}

/// A generalization of [`Clone`] to dynamically-sized types stored in arbitrary containers.
///
/// This trait is implemented for all types implementing [`Clone`], and also [slices](slice) of all
/// such types. You may also implement this trait to enable cloning trait objects and custom DSTs
/// (structures containing dynamically-sized fields).
///
/// # Safety
///
/// Implementations must ensure that when `.clone_to_uninit(dst)` returns normally rather than
/// panicking, it always leaves `*dst` initialized as a valid value of type `Self`.
///
/// # See also
///
/// * [`Clone::clone_from`] is a safe function which may be used instead when `Self` is a [`Sized`]
/// and the destination is already initialized; it may be able to reuse allocations owned by
/// the destination.
/// * [`ToOwned`], which allocates a new destination container.
///
/// [`ToOwned`]: ../../std/borrow/trait.ToOwned.html
#[unstable(feature = "clone_to_uninit", issue = "126799")]
pub unsafe trait CloneToUninit {
/// Performs copy-assignment from `self` to `dst`.
///
/// This is analogous to to `std::ptr::write(dst, self.clone())`,
/// except that `self` may be a dynamically-sized type ([`!Sized`](Sized)).
///
/// Before this function is called, `dst` may point to uninitialized memory.
/// After this function is called, `dst` will point to initialized memory; it will be
/// sound to create a `&Self` reference from the pointer.
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// * `dst` must be [valid] for writes.
/// * `dst` must be properly aligned.
/// * `dst` must have the same [pointer metadata] (slice length or `dyn` vtable) as `self`.
///
/// [valid]: ptr#safety
/// [pointer metadata]: crate::ptr::metadata()
///
/// # Panics
///
/// This function may panic. (For example, it might panic if memory allocation for a clone
/// of a value owned by `self` fails.)
/// If the call panics, then `*dst` should be treated as uninitialized memory; it must not be
/// read or dropped, because even if it was previously valid, it may have been partially
/// overwritten.
///
/// The caller may also need to take care to deallocate the allocation pointed to by `dst`,
/// if applicable, to avoid a memory leak, and may need to take other precautions to ensure
/// soundness in the presence of unwinding.
///
/// Implementors should avoid leaking values by, upon unwinding, dropping all component values
/// that might have already been created. (For example, if a `[Foo]` of length 3 is being
/// cloned, and the second of the three calls to `Foo::clone()` unwinds, then the first `Foo`
/// cloned should be dropped.)
unsafe fn clone_to_uninit(&self, dst: *mut Self);
}

#[unstable(feature = "clone_to_uninit", issue = "126799")]
unsafe impl<T: Clone> CloneToUninit for T {
default unsafe fn clone_to_uninit(&self, dst: *mut Self) {
// SAFETY: The safety conditions of clone_to_uninit() are a superset of those of
// ptr::write().
unsafe {
// We hope the optimizer will figure out to create the cloned value in-place,
// skipping ever storing it on the stack and the copy to the destination.
ptr::write(dst, self.clone());
}
}
}

// Specialized implementation for types that are [`Copy`], not just [`Clone`],
// and can therefore be copied bitwise.
#[unstable(feature = "clone_to_uninit", issue = "126799")]
unsafe impl<T: Copy> CloneToUninit for T {
unsafe fn clone_to_uninit(&self, dst: *mut Self) {
// SAFETY: The safety conditions of clone_to_uninit() are a superset of those of
// ptr::copy_nonoverlapping().
unsafe {
ptr::copy_nonoverlapping(self, dst, 1);
}
}
}

#[unstable(feature = "clone_to_uninit", issue = "126799")]
unsafe impl<T: Clone> CloneToUninit for [T] {
#[cfg_attr(debug_assertions, track_caller)]
default unsafe fn clone_to_uninit(&self, dst: *mut Self) {
let len = self.len();
// This is the most likely mistake to make, so check it as a debug assertion.
debug_assert_eq!(
len,
dst.len(),
"clone_to_uninit() source and destination must have equal lengths",
);

// SAFETY: The produced `&mut` is valid because:
// * The caller is obligated to provide a pointer which is valid for writes.
// * All bytes pointed to are in MaybeUninit, so we don't care about the memory's
// initialization status.
let uninit_ref = unsafe { &mut *(dst as *mut [MaybeUninit<T>]) };

// Copy the elements
let mut initializing = InitializingSlice::from_fully_uninit(uninit_ref);
for element_ref in self.iter() {
// If the clone() panics, `initializing` will take care of the cleanup.
initializing.push(element_ref.clone());
}
// If we reach here, then the entire slice is initialized, and we've satisfied our
// responsibilities to the caller. Disarm the cleanup guard by forgetting it.
mem::forget(initializing);
}
}

#[unstable(feature = "clone_to_uninit", issue = "126799")]
unsafe impl<T: Copy> CloneToUninit for [T] {
#[cfg_attr(debug_assertions, track_caller)]
unsafe fn clone_to_uninit(&self, dst: *mut Self) {
let len = self.len();
// This is the most likely mistake to make, so check it as a debug assertion.
debug_assert_eq!(
len,
dst.len(),
"clone_to_uninit() source and destination must have equal lengths",
);

// SAFETY: The safety conditions of clone_to_uninit() are a superset of those of
// ptr::copy_nonoverlapping().
unsafe {
ptr::copy_nonoverlapping(self.as_ptr(), dst.as_mut_ptr(), len);
}
}
}

/// Ownership of a collection of values stored in a non-owned `[MaybeUninit<T>]`, some of which
/// are not yet initialized. This is sort of like a `Vec` that doesn't own its allocation.
/// Its responsibility is to provide cleanup on unwind by dropping the values that *are*
/// initialized, unless disarmed by forgetting.
///
/// This is a helper for `impl<T: Clone> CloneToUninit for [T]`.
struct InitializingSlice<'a, T> {
data: &'a mut [MaybeUninit<T>],
/// Number of elements of `*self.data` that are initialized.
initialized_len: usize,
}

impl<'a, T> InitializingSlice<'a, T> {
#[inline]
fn from_fully_uninit(data: &'a mut [MaybeUninit<T>]) -> Self {
Self { data, initialized_len: 0 }
}

/// Push a value onto the end of the initialized part of the slice.
///
/// # Panics
///
/// Panics if the slice is already fully initialized.
#[inline]
fn push(&mut self, value: T) {
MaybeUninit::write(&mut self.data[self.initialized_len], value);
self.initialized_len += 1;
}
}

impl<'a, T> Drop for InitializingSlice<'a, T> {
#[cold] // will only be invoked on unwind
fn drop(&mut self) {
let initialized_slice = ptr::slice_from_raw_parts_mut(
MaybeUninit::slice_as_mut_ptr(self.data),
self.initialized_len,
);
// SAFETY:
// * the pointer is valid because it was made from a mutable reference
// * `initialized_len` counts the initialized elements as an invariant of this type,
// so each of the pointed-to elements is initialized and may be dropped.
unsafe {
ptr::drop_in_place::<[T]>(initialized_slice);
}
}
}

/// Implementations of `Clone` for primitive types.
///
/// Implementations that cannot be described in Rust
Expand Down
66 changes: 66 additions & 0 deletions core/tests/clone.rs
Original file line number Diff line number Diff line change
@@ -1,3 +1,6 @@
use core::clone::CloneToUninit;
use core::mem::MaybeUninit;

#[test]
#[allow(suspicious_double_ref_op)]
fn test_borrowed_clone() {
Expand All @@ -14,3 +17,66 @@ fn test_clone_from() {
b.clone_from(&a);
assert_eq!(*b, 5);
}

#[test]
fn test_clone_to_uninit_slice_success() {
// Using `String`s to exercise allocation and Drop of the individual elements;
// if something is aliased or double-freed, at least Miri will catch that.
let a: [String; 3] = ["a", "b", "c"].map(String::from);

let mut storage: MaybeUninit<[String; 3]> = MaybeUninit::uninit();
let b: [String; 3] = unsafe {
a[..].clone_to_uninit(storage.as_mut_ptr() as *mut [String]);
storage.assume_init()
};

assert_eq!(a, b);
}

#[test]
#[cfg(panic = "unwind")]
fn test_clone_to_uninit_slice_drops_on_panic() {
use core::sync::atomic::{AtomicUsize, Ordering::Relaxed};

/// A static counter is OK to use as long as _this one test_ isn't run several times in
/// multiple threads.
static COUNTER: AtomicUsize = AtomicUsize::new(0);
/// Counts how many instances are live, and panics if a fifth one is created
struct CountsDropsAndPanics {}
impl CountsDropsAndPanics {
fn new() -> Self {
COUNTER.fetch_add(1, Relaxed);
Self {}
}
}
impl Clone for CountsDropsAndPanics {
fn clone(&self) -> Self {
if COUNTER.load(Relaxed) == 4 { panic!("intentional panic") } else { Self::new() }
}
}
impl Drop for CountsDropsAndPanics {
fn drop(&mut self) {
COUNTER.fetch_sub(1, Relaxed);
}
}

let a: [CountsDropsAndPanics; 3] = core::array::from_fn(|_| CountsDropsAndPanics::new());
assert_eq!(COUNTER.load(Relaxed), 3);

let panic_payload = std::panic::catch_unwind(|| {
let mut storage: MaybeUninit<[CountsDropsAndPanics; 3]> = MaybeUninit::uninit();
// This should panic halfway through
unsafe {
a[..].clone_to_uninit(storage.as_mut_ptr() as *mut [CountsDropsAndPanics]);
}
})
.unwrap_err();
assert_eq!(panic_payload.downcast().unwrap(), Box::new("intentional panic"));

// Check for lack of leak, which is what this test is looking for
assert_eq!(COUNTER.load(Relaxed), 3, "leaked during clone!");

// Might as well exercise the rest of the drops
drop(a);
assert_eq!(COUNTER.load(Relaxed), 0);
}
2 changes: 2 additions & 0 deletions core/tests/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
#![feature(async_iterator)]
#![feature(bigint_helper_methods)]
#![feature(cell_update)]
#![feature(clone_to_uninit)]
#![feature(const_align_offset)]
#![feature(const_align_of_val_raw)]
#![feature(const_black_box)]
Expand Down Expand Up @@ -54,6 +55,7 @@
#![feature(slice_split_once)]
#![feature(split_as_slice)]
#![feature(maybe_uninit_fill)]
#![feature(maybe_uninit_slice)]
#![feature(maybe_uninit_uninit_array)]
#![feature(maybe_uninit_write_slice)]
#![feature(maybe_uninit_uninit_array_transpose)]
Expand Down

0 comments on commit a4ca461

Please sign in to comment.