Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: tf backend get_item and add set_item #28823

Merged
merged 6 commits into from
Sep 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 7 additions & 5 deletions binaries.json
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,9 @@
{
"utils": [
"C",
"CC",
"CD",
"CI",
"CL",
"CM",
"CV",
"CX",
"D",
Expand Down Expand Up @@ -43,7 +41,6 @@
"III",
"IIL",
"IIM",
"IIV",
"IIX",
"IL",
"ILC",
Expand All @@ -62,7 +59,6 @@
"IMV",
"IMX",
"IV",
"IVC",
"IVD",
"IVI",
"IVL",
Expand Down Expand Up @@ -103,7 +99,13 @@
"VCV",
"VCX",
"VD",
"VDC",
"VDD",
"VDI",
"VDL",
"VDM",
"VDV",
"VDX",
"VI",
"VIC",
"VID",
Expand Down Expand Up @@ -149,4 +151,4 @@
}
]
}
}
}
31 changes: 13 additions & 18 deletions ivy/compiler/compiler.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,15 @@


def clear_graph_cache():
"""Clears the graph cache which gets populated if `graph_caching` is set to
`True` in `ivy.trace_graph`, `ivy.transpile` or `ivy.unify`. Use this to
"""Clears the graph cache which gets populated if `graph_caching` is set
to `True` in `ivy.trace_graph`, `ivy.transpile` or `ivy.unify`. Use this to
reset or clear the graph cache if needed.

Examples
--------
>>> import ivy
>>> ivy.clear_graph_cache()
"""
>>> ivy.clear_graph_cache()"""

from ._compiler import clear_graph_cache as _clear_graph_cache

return _clear_graph_cache()
Expand Down Expand Up @@ -55,8 +55,8 @@ def graph_transpile(

Returns
-------
Either a transpiled Graph or a non-initialized LazyGraph.
"""
Either a transpiled Graph or a non-initialized LazyGraph."""

from ._compiler import graph_transpile as _graph_transpile

return _graph_transpile(
Expand Down Expand Up @@ -96,7 +96,6 @@ def source_to_source(
e.g. (source="torch_frontend", target="ivy") or (source="torch_frontend", target="tensorflow") etc.

Args:
----
object: The object (class/function) to be translated.
source (str, optional): The source framework. Defaults to 'torch'.
target (str, optional): The target framework. Defaults to 'tensorflow'.
Expand All @@ -107,9 +106,8 @@ def source_to_source(
the old implementation. Defaults to 'True'.

Returns:
-------
The translated object.
"""
The translated object."""

from ._compiler import source_to_source as _source_to_source

return _source_to_source(
Expand Down Expand Up @@ -140,8 +138,7 @@ def trace_graph(
params_v=None,
v=None
):
"""Takes `fn` and traces it into a more efficient composition of backend
operations.
"""Takes `fn` and traces it into a more efficient composition of backend operations.

Parameters
----------
Expand Down Expand Up @@ -211,8 +208,8 @@ def trace_graph(
>>> start = time.time()
>>> graph(x)
>>> print(time.time() - start)
0.0001785755157470703
"""
0.0001785755157470703"""

from ._compiler import trace_graph as _trace_graph

return _trace_graph(
Expand Down Expand Up @@ -252,7 +249,6 @@ def transpile(
e.g. (source="torch_frontend", target="ivy") or (source="torch_frontend", target="tensorflow") etc.

Args:
----
object: The object (class/function) to be translated.
source (str, optional): The source framework. Defaults to 'torch'.
target (str, optional): The target framework. Defaults to 'tensorflow'.
Expand All @@ -263,9 +259,8 @@ def transpile(
the old implementation. Defaults to 'True'.

Returns:
-------
The translated object.
"""
The translated object."""

from ._compiler import transpile as _transpile

return _transpile(
Expand Down
46 changes: 45 additions & 1 deletion ivy/functional/backends/tensorflow/general.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,51 @@ def get_item(
) -> Union[tf.Tensor, tf.Variable]:
if ivy.is_array(query) and ivy.is_bool_dtype(query) and not len(query.shape):
return tf.expand_dims(x, 0)
return x[query]
if isinstance(query, (tf.Tensor, tf.Variable)):
if query.dtype == tf.bool:
return tf.boolean_mask(x, query, axis=0)
else:
query = tf.cast(query, tf.int64)
return tf.gather(x, query, axis=0)
else:
if any([isinstance(q, slice) for q in query]):
# convert any lists/tuples within the query to slices
query = tuple([slice(*q) if isinstance(q, (list, tuple)) else q for q in query])
# for slices and other basic indexing, use __getitem__
return x[query]


def set_item(
x: Union[tf.Tensor, tf.Variable],
query: Union[tf.Tensor, tf.Variable, Tuple],
val: Union[tf.Tensor, tf.Variable],
/,
*,
copy: Optional[bool] = False,
) -> Union[tf.Tensor, tf.Variable]:
# TODO: we should re-write this at some point so it's compatible with tf.function (don't use numpy as an intermediary)
# when doing this, be sure to check the performance of the function on large tensors, compared to this implementation

if tf.is_tensor(x):
x = x.numpy()
if tf.is_tensor(val):
val = val.numpy()

if isinstance(query, (tf.Tensor, tf.Variable)):
query = query.numpy()
elif isinstance(query, tuple):
query = tuple(
q.numpy() if isinstance(q, (tf.Tensor, tf.Variable)) else q
for q in query
)

x[query] = val

if isinstance(x, tf.Variable) and not copy:
x.assign(x)
return x
else:
return tf.Variable(x) if isinstance(x, tf.Variable) else tf.convert_to_tensor(x)


def to_numpy(x: Union[tf.Tensor, tf.Variable], /, *, copy: bool = True) -> np.ndarray:
Expand Down
20 changes: 1 addition & 19 deletions ivy/functional/ivy/general.py
Original file line number Diff line number Diff line change
Expand Up @@ -2879,25 +2879,7 @@ def set_item(
ivy.array([[ 0, -1, 20],
[10, 10, 10]])
"""
if copy:
x = ivy.copy_array(x)
if not ivy.is_array(val):
val = ivy.array(val)
if 0 in x.shape or 0 in val.shape:
return x
if ivy.is_array(query) and ivy.is_bool_dtype(query):
if not len(query.shape):
query = ivy.tile(query, (x.shape[0],))
indices = ivy.nonzero(query, as_tuple=False)
else:
indices, target_shape, _ = _parse_query(
query, ivy.shape(x, as_array=True), scatter=True
)
if indices is None:
return x
val = val.astype(x.dtype)
ret = ivy.scatter_nd(indices, val, reduction="replace", out=x)
return ret
return current_backend(x).set_item(x, query, val, copy=copy)


set_item.mixed_backend_wrappers = {
Expand Down
2 changes: 0 additions & 2 deletions ivy/utils/decorator_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,8 +183,6 @@ def handle_get_item(fn):
def wrapper(inp, query, **kwargs):
try:
res = inp.__getitem__(query)
except IndexError:
raise
Comment on lines -186 to -187
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

need to remove this so the backend implementation can be called, which handles an IndexError when the query is a multi-dimensional tensor

except Exception:
res = fn(inp, query, **kwargs)
return res
Expand Down
Loading