Skip to content

Commit

Permalink
WIP: Add layer fidelity experiment
Browse files Browse the repository at this point in the history
  • Loading branch information
itoko committed Nov 21, 2023
1 parent fe3cf62 commit 898ccc5
Show file tree
Hide file tree
Showing 3 changed files with 560 additions and 0 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -600,3 +600,14 @@ def _layer_indices_from_num(num: Integral) -> Tuple[Integral, Integral, Integral
idx1 = num % _NUM_LAYER_1
idx0 = num // _NUM_LAYER_1
return idx0, idx1, idx2


@lru_cache(maxsize=24 * 24)
def _product_1q_nums(first: Integral, second: Integral) -> Integral:
"""Return the 2-qubit Clifford integer that represents the product of 1-qubit Cliffords."""
qc0 = CliffordUtils.clifford_1_qubit_circuit(first)
qc1 = CliffordUtils.clifford_1_qubit_circuit(second)
qc = QuantumCircuit(2)
qc.compose(qc0, qubits=(0,), inplace=True)
qc.compose(qc1, qubits=(1,), inplace=True)
return num_from_2q_circuit(qc)
347 changes: 347 additions & 0 deletions qiskit_experiments/library/randomized_benchmarking/layer_fidelity.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,347 @@
# This code is part of Qiskit.
#
# (C) Copyright IBM 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Layer Fidelity RB Experiment class.
"""
import logging
from collections import defaultdict
from typing import Union, Iterable, Optional, List, Sequence, Tuple

import numpy as np
from numpy.random import Generator, default_rng
from numpy.random.bit_generator import BitGenerator, SeedSequence

from qiskit.circuit import QuantumCircuit, CircuitInstruction, Barrier
from qiskit.circuit.library import get_standard_gate_name_mapping
from qiskit.exceptions import QiskitError
from qiskit.providers import BackendV2Converter
from qiskit.providers.backend import Backend, BackendV1, BackendV2
from qiskit.pulse.instruction_schedule_map import CalibrationPublisher

from qiskit_experiments.framework import BaseExperiment, Options
from qiskit_experiments.framework.restless_mixin import RestlessMixin

from .clifford_utils import (
CliffordUtils,
compose_1q,
compose_2q,
inverse_1q,
inverse_2q,
_product_1q_nums,
_num_from_2q_gate,
_clifford_1q_int_to_instruction,
_clifford_2q_int_to_instruction,
_decompose_clifford_ops,
)
from .layer_fidelity_analysis import LayerFidelityAnalysis

LOG = logging.getLogger(__name__)


GATE_NAME_MAP = get_standard_gate_name_mapping()
NUM_1Q_CLIFFORD = CliffordUtils.NUM_CLIFFORD_1_QUBIT


class LayerFidelity(BaseExperiment, RestlessMixin):
"""TODO
# section: overview
TODO
# section: analysis_ref
:class:`LayerFidelityAnalysis`
# section: reference
.. ref_arxiv:: 1 2311.05933
"""

def __init__(
self,
physical_qubits: Sequence[int],
two_qubit_layers: Sequence[Sequence[Tuple[int, int]]],
lengths: Iterable[int],
backend: Optional[Backend] = None,
num_samples: int = 3,
seed: Optional[Union[int, SeedSequence, BitGenerator, Generator]] = None,
# full_sampling: Optional[bool] = False, TODO: can we always do full_sampling and remove the option?
two_qubit_gate: Optional[str] = None,
one_qubit_basis_gates: Optional[Sequence[str]] = None,
):
"""Initialize a standard randomized benchmarking experiment.
Args:
physical_qubits: List of physical qubits for the experiment.
two_qubit_layers: List of pairs of qubits to run on, will use the direction given here.
lengths: A list of RB sequences lengths.
backend: The backend to run the experiment on.
num_samples: Number of samples to generate for each sequence length.
seed: Optional, seed used to initialize ``numpy.random.default_rng``.
when generating circuits. The ``default_rng`` will be initialized
with this seed value every time :meth:`circuits` is called.
two_qubit_gate: Two-qubit gate name (e.g. "cx", "cz", "ecr") of which the two qubit layers consist.
one_qubit_basis_gates: One-qubit gates to use for implementing 1q Clifford operations.
Raises:
QiskitError: If any invalid argument is supplied.
"""
# Compute full layers
full_layers = []
for two_q_layer in two_qubit_layers:
qubits_in_layer = {q for qpair in two_q_layer for q in qpair}
layer = two_q_layer + [q for q in physical_qubits if q not in qubits_in_layer]
full_layers.append(layer)

# Initialize base experiment
super().__init__(physical_qubits, analysis=LayerFidelityAnalysis(full_layers), backend=backend)

# Verify parameters
# TODO more checks
if len(set(lengths)) != len(lengths):
raise QiskitError(
f"The lengths list {lengths} should not contain " "duplicate elements."
)
if num_samples <= 0:
raise QiskitError(f"The number of samples {num_samples} should " "be positive.")
if two_qubit_gate not in GATE_NAME_MAP:
pass # TODO: too restrictive to forbidden custom two qubit gate name?

# Get parameters from backend
if two_qubit_gate is None:
# TODO: implement and raise an error if backend is None
raise NotImplemented()
if one_qubit_basis_gates is None:
# TODO: implement and raise an error if backend is None
raise NotImplemented()

# Set configurable options
self.set_experiment_options(
lengths=sorted(lengths),
num_samples=num_samples,
seed=seed,
two_qubit_layers=two_qubit_layers,
two_qubit_gate=two_qubit_gate,
one_qubit_basis_gates=tuple(one_qubit_basis_gates),
)
# self.analysis.set_options(outcome="0" * self.num_qubits)

@classmethod
def _default_experiment_options(cls) -> Options:
"""Default experiment options.
Experiment Options:
two_qubit_layers (List[List[Tuple[int, int]]]): List of pairs of qubits to run on.
lengths (List[int]): A list of RB sequences lengths.
num_samples (int): Number of samples to generate for each sequence length.
seed (None or int or SeedSequence or BitGenerator or Generator): A seed
used to initialize ``numpy.random.default_rng`` when generating circuits.
The ``default_rng`` will be initialized with this seed value every time
:meth:`circuits` is called.
two_qubit_gate (str): Two-qubit gate name (e.g. "cx", "cz", "ecr") of which the two qubit layers consist.
one_qubit_basis_gates (Tuple[str]): One-qubit gates to use for implementing 1q Clifford operations.
"""
options = super()._default_experiment_options()
options.update_options(
lengths=None,
num_samples=None,
seed=None,
two_qubit_layers=None,
two_qubit_gate=None,
one_qubit_basis_gates=tuple(),
)
return options

def set_experiment_options(self, **fields):
"""Set the experiment options.
Args:
fields: The fields to update the options
Raises:
AttributeError: If the field passed in is not a supported options
"""
for field in {"two_qubit_layers"}:
if hasattr(self._experiment_options, field) and self._experiment_options[field] is not None:
raise AttributeError(
f"Options field {field} is not allowed to update."
)
super().set_experiment_options(**fields)

@classmethod
def _default_transpile_options(cls) -> Options:
"""Default transpiler options for transpiling RB circuits."""
return Options(optimization_level=1)

def set_transpile_options(self, **fields):
"""Transpile options is not supported for LayerFidelity experiments.
Raises:
QiskitError: If `set_transpile_options` is called.
"""
raise QiskitError(
"Custom transpile options is not supported for LayerFidelity experiments."
)

def _set_backend(self, backend: Backend):
"""Set the backend V2 for RB experiments since RB experiments only support BackendV2
except for simulators. If BackendV1 is provided, it is converted to V2 and stored.
"""
if isinstance(backend, BackendV1) and "simulator" not in backend.name():
super()._set_backend(BackendV2Converter(backend, add_delay=True))
else:
super()._set_backend(backend)

def __residual_qubits(self, two_qubit_layer):
qubits_in_layer = {q for qpair in two_qubit_layer for q in qpair}
return [q for q in self.physical_qubits if q not in qubits_in_layer]

def circuits(self) -> List[QuantumCircuit]:
"""Return a list of physical circuits to measure layer fidelity.
Returns:
A list of :class:`QuantumCircuit`.
"""
opts = self.experiment_options
rng = default_rng(seed=opts.seed)
basis_gates = (opts.two_qubit_gate,) + opts.one_qubit_basis_gates
GATE2Q = GATE_NAME_MAP[opts.two_qubit_gate]
GATE2Q_CLIFF = _num_from_2q_gate(GATE2Q)
residal_qubits_by_layer = [self.__residual_qubits(layer) for layer in opts.two_qubit_layers]
# Circuit generation
circuits = []
num_qubits = max(self.physical_qubits) + 1
for i_sample in range(opts.num_samples):
for i_set, (two_qubit_layer, one_qubits) in enumerate(zip(opts.two_qubit_layers, residal_qubits_by_layer)):
num_2q_gates = len(two_qubit_layer)
num_1q_gates = len(one_qubits)
composite_qubits = two_qubit_layer + [(q,) for q in one_qubits]
composite_clbits = [(2*c, 2*c+1) for c in range(num_2q_gates)]
composite_clbits.extend([(c,) for c in range(2*num_2q_gates, 2*num_2q_gates+num_1q_gates)])
for length in opts.lengths:
# initialize cliffords and a ciruit (0: identity clifford)
cliffs_2q = [0] * num_2q_gates
cliffs_1q = [0] * num_1q_gates
circ = QuantumCircuit(num_qubits)
for _ in range(length):
# sample random 1q-Clifford layer
for j, qpair in enumerate(two_qubit_layer):
# sample product of two 1q-Cliffords as 2q interger Clifford
samples = rng.integers(NUM_1Q_CLIFFORD, size=2)
cliffs_2q[j] = compose_2q(cliffs_2q[j], _product_1q_nums(*samples))
for sample, q in zip(samples, qpair):
circ._append(
_clifford_1q_int_to_instruction(
sample, opts.one_qubit_basis_gates
),
(circ.qubits[q],),
tuple(),
)
for k, q in enumerate(one_qubits):
sample = rng.integers(NUM_1Q_CLIFFORD)
cliffs_1q[k] = compose_1q(cliffs_1q[k], sample)
circ._append(
_clifford_1q_int_to_instruction(sample, opts.one_qubit_basis_gates),
(circ.qubits[q],),
tuple(),
)
circ.barrier(self.physical_qubits)
# add two qubit gates
for j, qpair in enumerate(two_qubit_layer):
circ._append(GATE2Q, tuple(circ.qubits[q] for q in qpair), tuple())
cliffs_2q[j] = compose_2q(cliffs_2q[j], GATE2Q_CLIFF)
# TODO: add dd if necessary
for k, q in enumerate(one_qubits):
# TODO: add dd if necessary
pass
circ.barrier(self.physical_qubits)
# add the last inverse
for j, qpair in enumerate(two_qubit_layer):
inv = inverse_2q(cliffs_2q[j])
circ._append(
_clifford_2q_int_to_instruction(inv, basis_gates),
tuple(circ.qubits[q] for q in qpair),
tuple(),
)
for k, q in enumerate(one_qubits):
inv = inverse_1q(cliffs_1q[k])
circ._append(
_clifford_1q_int_to_instruction(inv, opts.one_qubit_basis_gates),
(circ.qubits[q],),
tuple(),
)

circ.measure_active() # includes insertion of the barrier before measurement
# store composite structure in metadata
circ.metadata = {
'experiment_type': 'BatchExperiment', 'composite_metadata': [
{
'experiment_type': 'ParallelExperiment',
'composite_index': list(range(num_2q_gates + num_1q_gates)),
'composite_metadata': [
{'experiment_type': 'SubLayerFidelity', 'physical_qubits': qpair, 'sample': i_sample, 'xval': length}
for qpair in two_qubit_layer
] + [
{'experiment_type': 'SubLayerFidelity', 'physical_qubits': (q,), 'sample': i_sample, 'xval': length}
for q in one_qubits
],
'composite_qubits': composite_qubits,
'composite_clbits': composite_clbits
}
],
'composite_index': [i_set]
}
circuits.append(circ)

return circuits

def _transpiled_circuits(self) -> List[QuantumCircuit]:
"""Return a list of experiment circuits, transpiled."""
transpiled = [_decompose_clifford_ops(circ) for circ in self.circuits()]
# Set custom calibrations provided in backend
if isinstance(self.backend, BackendV2):
instructions = [] # (op_name, qargs) for each element where qargs means qubit tuple
for two_qubit_layer in self.experiment_options.two_qubit_layers:
for qpair in two_qubit_layer:
instructions.append((self.experiment_options.two_qubit_gate, tuple(qpair)))
for q in self.__residual_qubits(two_qubit_layer):
for gate_1q in self.experiment_options.one_qubit_basis_gates:
instructions.append((gate_1q, (q,)))

common_calibrations = defaultdict(dict)
for op_name, qargs in instructions:
inst_prop = self.backend.target[op_name].get(qargs, None)
if inst_prop is None:
continue
schedule = inst_prop.calibration
if schedule is None:
continue
publisher = schedule.metadata.get("publisher", CalibrationPublisher.QISKIT)
if publisher != CalibrationPublisher.BACKEND_PROVIDER:
common_calibrations[op_name][(qargs, tuple())] = schedule

for circ in transpiled:
# This logic is inefficient in terms of payload size and backend compilation
# because this binds every custom pulse to a circuit regardless of
# its existence. It works but redundant calibration must be removed -- NK.
circ.calibrations = common_calibrations

return transpiled

def _metadata(self):
metadata = super()._metadata()
# Store measurement level and meas return if they have been
# set for the experiment
for run_opt in ["meas_level", "meas_return"]:
if hasattr(self.run_options, run_opt):
metadata[run_opt] = getattr(self.run_options, run_opt)

return metadata
Loading

0 comments on commit 898ccc5

Please sign in to comment.