Skip to content

Source code of our paper: PointINet: Point Cloud Frame Interpolation Network

Notifications You must be signed in to change notification settings

ispc-lab/PointINet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PointINet: Point Cloud Frame Interpolation Network

Introduction

The repository contains the source code and pre-trained models of our paper (published on AAAI 2021): PointINet: Point Cloud Frame Interpolation Network.

Environment

Our code is developed and tested on the following environment:

  • Python 3.6
  • PyTorch 1.4.0
  • Cuda 10.1
  • Numpy 1.19

We utilized several open source library to implement the code:

Usage

Dataset

We utilize two large scale outdoor LiDAR dataset:

To facilitate the implementation, we split the LiDAR point clouds in nuScenes dataset by scenes and the results are saved in data/scene-split. Besides, all of the LiDAR files in nuScenes dataset are stored in one single folder (include sweeps and samples).

For the pre-training of FlowNet3D, please refer to FlowNet3D to download the pre-processed dataset (Flythings3D and Kitti scene flow dataset).

Demo

We provide a demo to visualize the result, please run

python demo.py --is_save IS_SAVE --visualize VISUALIZE

Training

Training of FlowNet3D

To train FlowNet3D, firstly train on Flythings3D dataset

python train_sceneflow.py --batch_size BATCH_SIZE --gpu GPU --dataset Flythings3D --root DATAROOT --save_dir CHECKPOINTS_SAVE_DIR --train_type init

Then train it on Kitti scene flow dataset

python train_sceneflow.py --batch_size BATCH_SIZE --gpu GPU --dataset Kitti --root DATAROOT --pretrain_model PRETRAIN_MODEL --save_dir CHECKPOINTS_SAVE_DIR --train_type init

After that train it on Kitti odometry dataset based on the model pretrained on Kitti scene flow dataset.

python train_sceneflow.py --batch_size BATCH_SIZE --gpu GPU --dataset Kitti --root DATAROOT --pretrain_model PRETRAIN_MODEL --save_dir CHECKPOINTS_SAVE_DIR --train_type refine

Also train it on nuScenes dataset based on the model pretrained on Kitti scene flow dataset.

python train_sceneflow.py --batch_size BATCH_SIZE --gpu GPU --dataset nuscenes --root DATAROOT --pretrain_model PRETRAIN_MODEL --save_dir CHECKPOINTS_SAVE_DIR --train_type refine

Training of PointINet

We only train the PointINet on Kitti odometry dataset, run

python train_interp.py --batch_size BATCH_SIZE --gpu GPU --dataset kitti --root DATAROOT --pretrain_model FLOWNET3D_PRETRAIN_MODEL --freeze 1

Testing

To test on Kitti odometry dataset, run

python test.py --gpu GPU --dataset kitti --root DATAROOT --pretrain_model POINTINET_PRETRAIN_MODEL --pretrain_flow_model FLOWNET3D_PRETRAIN_MODEL

To test on nuScenes dataset, run

python test.py --gpu GPU --dataset nuscenes --root DATAROOT --pretrain_model POINTINET_PRETRAIN_MODEL --pretrain_flow_model FLOWNET3D_PRETRAIN_MODEL --scenelist TEST_SCENE_LIST

Citation

@InProceedings{Lu2020_PointINet,
    author = {Lu, Fan and Chen, Guang and Qu, Sanqing and Li, Zhijun and Liu, Yinlong and Knoll, Alois},
    title = {PointINet: Point Cloud Frame Interpolation Network},
    booktitle = {Proceedings of the AAAI Conference on Artificial Intelligence},
    year = {2021}
}

About

Source code of our paper: PointINet: Point Cloud Frame Interpolation Network

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages