-
Notifications
You must be signed in to change notification settings - Fork 328
/
Copy pathrun_pipeline.py
261 lines (214 loc) · 9.24 KB
/
run_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import argparse
import logging
import sys
from pathlib import Path
import pprint
import yaml
import numpy as np
import torch.distributed as dist
from torch import multiprocessing
import open3d.ml as _ml3d
def parse_args():
parser = argparse.ArgumentParser(description='Train a network')
parser.add_argument('framework',
help='deep learning framework: tf or torch')
parser.add_argument('-c', '--cfg_file', help='path to the config file')
parser.add_argument('-m', '--model', help='network model')
parser.add_argument('-p',
'--pipeline',
help='pipeline',
default='SemanticSegmentation')
parser.add_argument('-d', '--dataset', help='dataset')
parser.add_argument('--cfg_model', help='path to the model\'s config file')
parser.add_argument('--cfg_pipeline',
help='path to the pipeline\'s config file')
parser.add_argument('--cfg_dataset',
help='path to the dataset\'s config file')
parser.add_argument('--dataset_path', help='path to the dataset')
parser.add_argument('--ckpt_path', help='path to the checkpoint')
parser.add_argument('--device',
help='devices to run the pipeline',
default='cuda')
parser.add_argument('--device_ids',
nargs='+',
help='cuda device list',
default=['0'])
parser.add_argument('--split', help='train or test', default='train')
parser.add_argument('--mode', help='additional mode', default=None)
parser.add_argument('--max_epochs', help='number of epochs', default=None)
parser.add_argument('--batch_size', help='batch size', default=None)
parser.add_argument('--main_log_dir',
help='the dir to save logs and models')
parser.add_argument('--seed', help='random seed', default=0, type=int)
parser.add_argument('--nodes', help='number of nodes', default=1, type=int)
parser.add_argument('--node_rank',
help='ranking within the nodes, default: 0. To get from'
' the environment, enter the name of an env var eg: '
'"SLURM_NODEID".',
default="0",
type=str)
parser.add_argument(
'--host',
help='Host for distributed training, default: localhost',
default='localhost')
parser.add_argument('--port',
help='port for distributed training, default: 12355',
default='12355')
parser.add_argument(
'--backend',
help=
'backend for distributed training. One of (nccl, gloo)}, default: gloo',
default='gloo')
args, unknown = parser.parse_known_args()
try:
args.node_rank = int(args.node_rank)
except ValueError: # str => get from environment
args.node_rank = int(os.environ[args.node_rank])
parser_extra = argparse.ArgumentParser(description='Extra arguments')
for arg in unknown:
if arg.startswith(("-", "--")):
parser_extra.add_argument(arg)
args_extra = parser_extra.parse_args(unknown)
print("regular arguments")
print(yaml.dump(vars(args)))
print("extra arguments")
print(yaml.dump(vars(args_extra)))
return args, vars(args_extra)
def main():
cmd_line = ' '.join(sys.argv[:])
args, extra_dict = parse_args()
framework = _ml3d.utils.convert_framework_name(args.framework)
args.device, args.device_ids = _ml3d.utils.convert_device_name(
args.device, args.device_ids)
rng = np.random.default_rng(args.seed)
if framework == 'torch':
import open3d.ml.torch as ml3d
import torch.multiprocessing as mp
import torch.distributed as dist
else:
os.environ[
'TF_CPP_MIN_LOG_LEVEL'] = '1' # Disable INFO messages from tf
import tensorflow as tf
import open3d.ml.tf as ml3d
device = args.device
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
if device == 'cpu':
tf.config.set_visible_devices([], 'GPU')
elif device == 'cuda':
if len(args.device_ids) > 1:
raise NotImplementedError(
"Multi-GPU training with TensorFlow is not yet implemented."
)
tf.config.set_visible_devices(gpus[0], 'GPU')
else:
idx = device.split(':')[1]
tf.config.set_visible_devices(gpus[int(idx)], 'GPU')
except RuntimeError as e:
print(e)
if args.cfg_file is not None:
cfg = _ml3d.utils.Config.load_from_file(args.cfg_file)
Pipeline = _ml3d.utils.get_module("pipeline", cfg.pipeline.name,
framework)
Model = _ml3d.utils.get_module("model", cfg.model.name, framework)
Dataset = _ml3d.utils.get_module("dataset", cfg.dataset.name)
cfg_dict_dataset, cfg_dict_pipeline, cfg_dict_model = \
_ml3d.utils.Config.merge_cfg_file(cfg, args, extra_dict)
if args.mode is not None:
cfg_dict_model["mode"] = args.mode
if args.max_epochs is not None:
cfg_dict_pipeline["max_epochs"] = args.max_epochs
if args.batch_size is not None:
cfg_dict_pipeline["batch_size"] = args.batch_size
cfg_dict_dataset['seed'] = rng
cfg_dict_model['seed'] = rng
cfg_dict_pipeline['seed'] = rng
cfg_dict_pipeline["device"] = args.device
cfg_dict_pipeline["device_ids"] = args.device_ids
else:
if (args.pipeline and args.model and args.dataset) is None:
raise ValueError("Please specify pipeline, model, and dataset " +
"if no cfg_file given")
Pipeline = _ml3d.utils.get_module("pipeline", args.pipeline, framework)
Model = _ml3d.utils.get_module("model", args.model, framework)
Dataset = _ml3d.utils.get_module("dataset", args.dataset)
cfg_dict_dataset, cfg_dict_pipeline, cfg_dict_model = \
_ml3d.utils.Config.merge_module_cfg_file(args, extra_dict)
cfg_dict_dataset['seed'] = rng
cfg_dict_model['seed'] = rng
cfg_dict_pipeline['seed'] = rng
with open(Path(__file__).parent / 'README.md', 'r') as freadme:
readme = freadme.read()
cfg_tb = {
'readme': readme,
'cmd_line': cmd_line,
'dataset': pprint.pformat(cfg_dict_dataset, indent=2),
'model': pprint.pformat(cfg_dict_model, indent=2),
'pipeline': pprint.pformat(cfg_dict_pipeline, indent=2)
}
args.cfg_tb = cfg_tb
args.distributed = framework == 'torch' and args.device != 'cpu' and len(
args.device_ids) > 1
if not args.distributed:
dataset = Dataset(**cfg_dict_dataset)
model = Model(**cfg_dict_model, mode=args.mode)
pipeline = Pipeline(model, dataset, **cfg_dict_pipeline)
pipeline.cfg_tb = cfg_tb
if args.split == 'test':
pipeline.run_test()
else:
pipeline.run_train()
else:
mp.spawn(main_worker,
args=(Dataset, Model, Pipeline, cfg_dict_dataset,
cfg_dict_model, cfg_dict_pipeline, args),
nprocs=len(args.device_ids))
def setup(rank, world_size, args):
os.environ['PRIMARY_ADDR'] = args.host
os.environ['PRIMARY_PORT'] = args.port
# initialize the process group
dist.init_process_group(args.backend, rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def main_worker(local_rank, Dataset, Model, Pipeline, cfg_dict_dataset,
cfg_dict_model, cfg_dict_pipeline, args):
rank = args.node_rank * len(args.device_ids) + local_rank
world_size = args.nodes * len(args.device_ids)
setup(rank, world_size, args)
cfg_dict_dataset['rank'] = rank
cfg_dict_model['rank'] = rank
cfg_dict_pipeline['rank'] = rank
rng = np.random.default_rng(args.seed + rank)
cfg_dict_dataset['seed'] = rng
cfg_dict_model['seed'] = rng
cfg_dict_pipeline['seed'] = rng
device = f"cuda:{args.device_ids[local_rank]}"
print(
f"local_rank = {local_rank}, rank = {rank}, world_size = {world_size},"
f" gpu = {device}")
cfg_dict_model['device'] = device
cfg_dict_pipeline['device'] = device
dataset = Dataset(**cfg_dict_dataset)
model = Model(**cfg_dict_model, mode=args.mode)
pipeline = Pipeline(model,
dataset,
distributed=args.distributed,
**cfg_dict_pipeline)
pipeline.cfg_tb = args.cfg_tb
if args.split == 'test':
if rank == 0:
pipeline.run_test()
else:
pipeline.run_train()
cleanup()
if __name__ == '__main__':
logging.basicConfig(
level=logging.INFO,
format='%(levelname)s - %(asctime)s - %(module)s - %(message)s',
)
multiprocessing.set_start_method('forkserver')
sys.exit(main())