Skip to content

Commit

Permalink
add C3C2
Browse files Browse the repository at this point in the history
  • Loading branch information
iscyy committed Aug 22, 2022
1 parent 53a4a93 commit ba0d4cc
Show file tree
Hide file tree
Showing 4 changed files with 113 additions and 3 deletions.
48 changes: 48 additions & 0 deletions configs/yolov5_exp/yolov5m_C3C2.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80 # number of classes
depth_multiple: 0.67 # model depth multiple
width_multiple: 0.75 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3C2, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3C2, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3C2, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3C2, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]

# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13

[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)

[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
48 changes: 48 additions & 0 deletions configs/yolov5_exp/yolov5s_C3C2.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32

# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3C2, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3C2, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3C2, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3C2, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]

# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13

[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)

[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
16 changes: 15 additions & 1 deletion models/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,11 +173,25 @@ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, nu
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])

def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

class C3C2(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.conv = nn.Conv2d(c1, c_, 1, 1, autopad(1, None), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c_)
self.act = nn.SiLU()
self.cv1 = Conv(2 * c_, c2, 1, act=nn.Mish())
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

def forward(self, x):
y = self.conv(x)
return self.cv1(torch.cat((self.m(self.act(self.bn(y))), y), dim=1))

class C3x(C3):
# C3 module with cross-convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
Expand Down
4 changes: 2 additions & 2 deletions models/yolo.py
Original file line number Diff line number Diff line change
Expand Up @@ -359,14 +359,14 @@ def parse_model(d, ch): # model_dict, input_channels(3)
# add module research
elif m in [CARAFE, SPPCSPC, RepConv, BoT3, CA, CBAM, Involution, Stem, ResCSPC, ResCSPB, \
ResXCSPB, ResXCSPC, BottleneckCSPB, BottleneckCSPC,
ASPP, BasicRFB, SPPCSPC_group, HorBlock, CNeB, C3GC, nn.ConvTranspose2d]:
ASPP, BasicRFB, SPPCSPC_group, HorBlock, CNeB,C3GC ,C3C2, nn.ConvTranspose2d]:
c1, c2 = ch[f], args[0]
if c2 != no: # if not output
c2 = make_divisible(c2 * gw, 8)

args = [c1, c2, *args[1:]]
if m in [C3RFEM, SPPCSPC, BoT3, ResCSPC, ResCSPB, ResXCSPB, ResXCSPC, BottleneckCSPB, BottleneckCSPC, \
HorBlock, CNeB, C3GC]:
HorBlock, CNeB, C3GC, C3C2]:
args.insert(2, n) # number of repeats
n = 1
elif m is nn.ConvTranspose2d:
Expand Down

0 comments on commit ba0d4cc

Please sign in to comment.