Skip to content

iriscxy/FES

Repository files navigation

Towards Improving Faithfulness in Abstractive Summarization (NeurIPS 2022)

1. How to Install

Requirements

  • python3
  • conda create --name env
  • pip3 install -r requirements.txt

Description of Codes

  • run_mybart -> training and evaluation procedure
  • magic_bart.py -> main models
  • module.py -> modules
  • dataset_maker.py -> data preprocessing

Workspace

./log/seq2seqV4/ will be created for storing model checkpoints and scores.

2. Preprocessing

Download the dataset from https://drive.google.com/file/d/1b_NXY_KsMtkTpaftEfPJhJNw5VRmUgSg/view?usp=sharing. Download causal language model from https://drive.google.com/file/d/1_XQ49dh07i6KNw3tE8H_WxXU9H3I94us/view?usp=sharing.

For data preprocessing, please run

CUDA_VISIBLE_DEVICES=0 python3 run_mybart.py --model_name_or_path facebook/bart-base \
  --do_train --do_eval --train_file [train_file] \
  --validation_file [valid_file] \
  --test_file [test_file] --output_dir das \
  --exp_name cnndm --max_source_length 1024 \
  --max_target_length 100 --gene_dataset_path tgt_dir

The preprocessing precedure will store the processed data as seperate json files in tgt_dir.

3. How to Run

Train

python3 run_mybart.py --model_name_or_path facebook/bart-large \
                      --do_train --output_dir das \
                      --exp_name exp_name \
                      --max_source_length 1024 --max_target_length 100 \
                      --save_dataset_path tgt_dir\
                      --num_train_epochs 100 \
                      --per_device_train_batch_size 8 --save_strategy epoch \
                      --label_smoothing_factor 0.1 --weight_decay 0.01 \
                      --max_grad_norm 0.1 --warmup_steps 500\
                      --gradient_accumulation_steps 4 \
                      --learning_rate 3e-05 --margin_model True \
                      --lm_path lm_model

Evaluate

python3 run_mybart.py --per_device_eval_batch_size 32 \
  --log_root ./log --save_dataset_path tgt_dir \
  --exp_name exp_name --do_predict \
  --predict_with_generate True \
  --output_dir das \
  --val_max_target_length 120 \
  --model_name_or_path model_path \
  --lm_path lm_model

Citation

We appreciate your citation if you find our work beneficial.

@article{chen2022towards,
  title={Towards Improving Faithfulness in Abstractive Summarization},
  author={Chen, Xiuying and Li, Mingzhe and Gao, Xin and Zhang, Xiangliang},
  journal={NeurIPS},
  year={2022}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages