Skip to content

Commit

Permalink
[Enhancement] Optimize pose tracker (open-mmlab#1460)
Browse files Browse the repository at this point in the history
* sync master

* suppress overlapped tracks

* add CUDA WarpAffine

* export symbols

* fix linkage

* update pose tracker

* clean-up

* fix MSVC build

* fix MSVC build

* add ffmpeg cli command
  • Loading branch information
lzhangzz authored and irexyc committed Jan 11, 2023
1 parent be0b0b3 commit 82c1edf
Show file tree
Hide file tree
Showing 13 changed files with 1,053 additions and 230 deletions.
4 changes: 3 additions & 1 deletion csrc/mmdeploy/codebase/mmpose/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,9 @@ project(mmdeploy_mmpose)
file(GLOB_RECURSE SRCS ${CMAKE_CURRENT_SOURCE_DIR} "*.cpp")
mmdeploy_add_module(${PROJECT_NAME} "${SRCS}")
target_link_libraries(${PROJECT_NAME} PRIVATE
mmdeploy::transform mmdeploy_opencv_utils)
mmdeploy::transform
mmdeploy_operation
mmdeploy_opencv_utils)
add_library(mmdeploy::mmpose ALIAS ${PROJECT_NAME})

set(MMDEPLOY_TASKS ${MMDEPLOY_TASKS} pose_detector CACHE INTERNAL "")
24 changes: 12 additions & 12 deletions csrc/mmdeploy/codebase/mmpose/topdown_affine.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,8 @@
#include "mmdeploy/core/tensor.h"
#include "mmdeploy/core/utils/device_utils.h"
#include "mmdeploy/core/utils/formatter.h"
#include "mmdeploy/operation/managed.h"
#include "mmdeploy/operation/vision.h"
#include "mmdeploy/preprocess/transform/transform.h"
#include "opencv2/imgproc.hpp"
#include "opencv_utils.h"
Expand All @@ -32,18 +34,15 @@ class TopDownAffine : public transform::Transform {
stream_ = args["context"]["stream"].get<Stream>();
assert(args.contains("image_size"));
from_value(args["image_size"], image_size_);
warp_affine_ = operation::Managed<operation::WarpAffine>::Create("bilinear");
}

~TopDownAffine() override = default;

Result<void> Apply(Value& data) override {
MMDEPLOY_DEBUG("top_down_affine input: {}", data);

Device host{"cpu"};
auto _img = data["img"].get<Tensor>();
OUTCOME_TRY(auto img, MakeAvailableOnDevice(_img, host, stream_));
stream_.Wait().value();
auto src = cpu::Tensor2CVMat(img);
auto img = data["img"].get<Tensor>();

// prepare data
vector<float> bbox;
Expand All @@ -62,21 +61,20 @@ class TopDownAffine : public transform::Transform {

auto r = data["rotation"].get<float>();

cv::Mat dst;
Tensor dst;
if (use_udp_) {
cv::Mat trans =
GetWarpMatrix(r, {c[0] * 2.f, c[1] * 2.f}, {image_size_[0] - 1.f, image_size_[1] - 1.f},
{s[0] * 200.f, s[1] * 200.f});

cv::warpAffine(src, dst, trans, {image_size_[0], image_size_[1]}, cv::INTER_LINEAR);
OUTCOME_TRY(warp_affine_.Apply(img, dst, trans.ptr<float>(), image_size_[1], image_size_[0]));
} else {
cv::Mat trans =
GetAffineTransform({c[0], c[1]}, {s[0], s[1]}, r, {image_size_[0], image_size_[1]});
cv::warpAffine(src, dst, trans, {image_size_[0], image_size_[1]}, cv::INTER_LINEAR);
OUTCOME_TRY(warp_affine_.Apply(img, dst, trans.ptr<float>(), image_size_[1], image_size_[0]));
}

data["img"] = cpu::CVMat2Tensor(dst);
data["img_shape"] = {1, image_size_[1], image_size_[0], dst.channels()};
data["img_shape"] = {1, image_size_[1], image_size_[0], dst.shape(3)};
data["img"] = std::move(dst);
data["center"] = to_value(c);
data["scale"] = to_value(s);
MMDEPLOY_DEBUG("output: {}", data);
Expand Down Expand Up @@ -106,7 +104,7 @@ class TopDownAffine : public transform::Transform {
theta = theta * 3.1415926 / 180;
float scale_x = size_dst.width / size_target.width;
float scale_y = size_dst.height / size_target.height;
cv::Mat matrix = cv::Mat(2, 3, CV_32FC1);
cv::Mat matrix = cv::Mat(2, 3, CV_32F);
matrix.at<float>(0, 0) = std::cos(theta) * scale_x;
matrix.at<float>(0, 1) = -std::sin(theta) * scale_x;
matrix.at<float>(0, 2) =
Expand Down Expand Up @@ -142,6 +140,7 @@ class TopDownAffine : public transform::Transform {

cv::Mat trans = inv ? cv::getAffineTransform(dst_points, src_points)
: cv::getAffineTransform(src_points, dst_points);
trans.convertTo(trans, CV_32F);
return trans;
}

Expand All @@ -160,6 +159,7 @@ class TopDownAffine : public transform::Transform {
}

protected:
operation::Managed<operation::WarpAffine> warp_affine_;
bool use_udp_{false};
vector<int> image_size_;
std::string backend_;
Expand Down
3 changes: 2 additions & 1 deletion csrc/mmdeploy/operation/cpu/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,8 @@ set(SRCS resize.cpp
hwc2chw.cpp
normalize.cpp
crop.cpp
flip.cpp)
flip.cpp
warp_affine.cpp)

mmdeploy_add_module(${PROJECT_NAME} "${SRCS}")

Expand Down
2 changes: 1 addition & 1 deletion csrc/mmdeploy/operation/cpu/resize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ namespace mmdeploy::operation::cpu {

class ResizeImpl : public Resize {
public:
ResizeImpl(std::string interp) : interp_(std::move(interp)) {}
explicit ResizeImpl(std::string interp) : interp_(std::move(interp)) {}

Result<void> apply(const Tensor& src, Tensor& dst, int dst_h, int dst_w) override {
auto src_mat = mmdeploy::cpu::Tensor2CVMat(src);
Expand Down
29 changes: 29 additions & 0 deletions csrc/mmdeploy/operation/cpu/warp_affine.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
// Copyright (c) OpenMMLab. All rights reserved.

#include "mmdeploy/operation/vision.h"
#include "mmdeploy/utils/opencv/opencv_utils.h"

namespace mmdeploy::operation::cpu {

class WarpAffineImpl : public WarpAffine {
public:
explicit WarpAffineImpl(int method) : method_(method) {}

Result<void> apply(const Tensor& src, Tensor& dst, const float affine_matrix[6], int dst_h,
int dst_w) override {
auto src_mat = mmdeploy::cpu::Tensor2CVMat(src);
cv::Mat_<float> _matrix(2, 3, const_cast<float*>(affine_matrix));
auto dst_mat = mmdeploy::cpu::WarpAffine(src_mat, _matrix, dst_h, dst_w, method_);
dst = mmdeploy::cpu::CVMat2Tensor(dst_mat);
return success();
}

private:
int method_;
};

MMDEPLOY_REGISTER_FACTORY_FUNC(WarpAffine, (cpu, 0), [](const string_view& interp) {
return std::make_unique<WarpAffineImpl>(::mmdeploy::cpu::GetInterpolationMethod(interp).value());
});

} // namespace mmdeploy::operation::cpu
3 changes: 2 additions & 1 deletion csrc/mmdeploy/operation/cuda/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,8 @@ set(SRCS resize.cpp
normalize.cu
crop.cpp
crop.cu
flip.cpp)
flip.cpp
warp_affine.cpp)

mmdeploy_add_module(${PROJECT_NAME} "${SRCS}")

Expand Down
118 changes: 118 additions & 0 deletions csrc/mmdeploy/operation/cuda/warp_affine.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
// Copyright (c) OpenMMLab. All rights reserved.

#include "mmdeploy/core/utils/formatter.h"
#include "mmdeploy/operation/vision.h"
#include "ppl/cv/cuda/warpaffine.h"

namespace mmdeploy::operation::cuda {

class WarpAffineImpl : public WarpAffine {
public:
explicit WarpAffineImpl(ppl::cv::InterpolationType interp) : interp_(interp) {}

Result<void> apply(const Tensor& src, Tensor& dst, const float affine_matrix[6], int dst_h,
int dst_w) override {
assert(src.device() == device());

TensorDesc desc{device(), src.data_type(), {1, dst_h, dst_w, src.shape(3)}, src.name()};
Tensor dst_tensor(desc);

const auto m = affine_matrix;
auto inv = Invert(affine_matrix);

auto cuda_stream = GetNative<cudaStream_t>(stream());
if (src.data_type() == DataType::kINT8) {
OUTCOME_TRY(Dispatch<uint8_t>(src, dst_tensor, inv.data(), cuda_stream));
} else if (src.data_type() == DataType::kFLOAT) {
OUTCOME_TRY(Dispatch<float>(src, dst_tensor, inv.data(), cuda_stream));
} else {
MMDEPLOY_ERROR("unsupported data type {}", src.data_type());
return Status(eNotSupported);
}

dst = std::move(dst_tensor);
return success();
}

private:
// ppl.cv uses inverted transform
// https://github.com/opencv/opencv/blob/bc6544c0bcfa9ca5db5e0d0551edf5c8e7da3852/modules/imgproc/src/imgwarp.cpp#L3478
static std::array<float, 6> Invert(const float affine_matrix[6]) {
const auto* M = affine_matrix;
std::array<float, 6> inv{};
auto iM = inv.data();

auto D = M[0] * M[3 + 1] - M[1] * M[3];
D = D != 0.f ? 1.f / D : 0.f;
auto A11 = M[3 + 1] * D, A22 = M[0] * D, A12 = -M[1] * D, A21 = -M[3] * D;
auto b1 = -A11 * M[2] - A12 * M[3 + 2];
auto b2 = -A21 * M[2] - A22 * M[3 + 2];

iM[0] = A11;
iM[1] = A12;
iM[2] = b1;
iM[3] = A21;
iM[3 + 1] = A22;
iM[3 + 2] = b2;

return inv;
}

template <typename T>
auto Select(int channels) -> decltype(&ppl::cv::cuda::WarpAffine<T, 1>) {
switch (channels) {
case 1:
return &ppl::cv::cuda::WarpAffine<T, 1>;
case 3:
return &ppl::cv::cuda::WarpAffine<T, 3>;
case 4:
return &ppl::cv::cuda::WarpAffine<T, 4>;
default:
MMDEPLOY_ERROR("unsupported channels {}", channels);
return nullptr;
}
}

template <class T>
Result<void> Dispatch(const Tensor& src, Tensor& dst, const float affine_matrix[6],
cudaStream_t stream) {
int h = (int)src.shape(1);
int w = (int)src.shape(2);
int c = (int)src.shape(3);
int dst_h = (int)dst.shape(1);
int dst_w = (int)dst.shape(2);

auto input = src.data<T>();
auto output = dst.data<T>();

ppl::common::RetCode ret = 0;

if (auto warp_affine = Select<T>(c); warp_affine) {
ret = warp_affine(stream, h, w, w * c, input, dst_h, dst_w, dst_w * c, output, affine_matrix,
interp_, ppl::cv::BORDER_CONSTANT, 0);
} else {
return Status(eNotSupported);
}

return ret == 0 ? success() : Result<void>(Status(eFail));
}

ppl::cv::InterpolationType interp_;
};

static auto Create(const string_view& interp) {
ppl::cv::InterpolationType type{};
if (interp == "bilinear") {
type = ppl::cv::InterpolationType::INTERPOLATION_LINEAR;
} else if (interp == "nearest") {
type = ppl::cv::InterpolationType::INTERPOLATION_NEAREST_POINT;
} else {
MMDEPLOY_ERROR("unsupported interpolation method: {}", interp);
throw_exception(eNotSupported);
}
return std::make_unique<WarpAffineImpl>(type);
}

MMDEPLOY_REGISTER_FACTORY_FUNC(WarpAffine, (cuda, 0), Create);

} // namespace mmdeploy::operation::cuda
1 change: 1 addition & 0 deletions csrc/mmdeploy/operation/vision.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -12,5 +12,6 @@ MMDEPLOY_DEFINE_REGISTRY(HWC2CHW);
MMDEPLOY_DEFINE_REGISTRY(Normalize);
MMDEPLOY_DEFINE_REGISTRY(Crop);
MMDEPLOY_DEFINE_REGISTRY(Flip);
MMDEPLOY_DEFINE_REGISTRY(WarpAffine);

} // namespace mmdeploy::operation
8 changes: 7 additions & 1 deletion csrc/mmdeploy/operation/vision.h
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,13 @@ class Flip : public Operation {
};
MMDEPLOY_DECLARE_REGISTRY(Flip, unique_ptr<Flip>(int flip_code));

// TODO: warp affine
// 2x3 OpenCV affine matrix, row major
class WarpAffine : public Operation {
public:
virtual Result<void> apply(const Tensor& src, Tensor& dst, const float affine_matrix[6],
int dst_h, int dst_w) = 0;
};
MMDEPLOY_DECLARE_REGISTRY(WarpAffine, unique_ptr<WarpAffine>(const string_view& interp));

} // namespace mmdeploy::operation

Expand Down
6 changes: 6 additions & 0 deletions csrc/mmdeploy/preprocess/transform/load.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,12 @@ class PrepareImage : public Transform {

Result<void> Apply(Value& data) override {
MMDEPLOY_DEBUG("input: {}", data);

// early exit
if (data.contains("img") && data["img"].is_any<Tensor>()) {
return success();
}

assert(data.contains("ori_img"));

Mat src_mat = data["ori_img"].get<Mat>();
Expand Down
39 changes: 25 additions & 14 deletions csrc/mmdeploy/utils/opencv/opencv_utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -106,23 +106,34 @@ Tensor CVMat2Tensor(const cv::Mat& mat) {
return Tensor{desc, data};
}

Result<int> GetInterpolationMethod(const std::string_view& method) {
if (method == "bilinear") {
return cv::INTER_LINEAR;
} else if (method == "nearest") {
return cv::INTER_NEAREST;
} else if (method == "area") {
return cv::INTER_AREA;
} else if (method == "bicubic") {
return cv::INTER_CUBIC;
} else if (method == "lanczos") {
return cv::INTER_LANCZOS4;
}
MMDEPLOY_ERROR("unsupported interpolation method: {}", method);
return Status(eNotSupported);
}

cv::Mat Resize(const cv::Mat& src, int dst_height, int dst_width,
const std::string& interpolation) {
cv::Mat dst(dst_height, dst_width, src.type());
if (interpolation == "bilinear") {
cv::resize(src, dst, dst.size(), 0, 0, cv::INTER_LINEAR);
} else if (interpolation == "nearest") {
cv::resize(src, dst, dst.size(), 0, 0, cv::INTER_NEAREST);
} else if (interpolation == "area") {
cv::resize(src, dst, dst.size(), 0, 0, cv::INTER_AREA);
} else if (interpolation == "bicubic") {
cv::resize(src, dst, dst.size(), 0, 0, cv::INTER_CUBIC);
} else if (interpolation == "lanczos") {
cv::resize(src, dst, dst.size(), 0, 0, cv::INTER_LANCZOS4);
} else {
MMDEPLOY_ERROR("{} interpolation is not supported", interpolation);
assert(0);
}
auto method = GetInterpolationMethod(interpolation).value();
cv::resize(src, dst, dst.size(), method);
return dst;
}

cv::Mat WarpAffine(const cv::Mat& src, const cv::Mat& affine_matrix, int dst_height, int dst_width,
int interpolation) {
cv::Mat dst(dst_height, dst_width, src.type());
cv::warpAffine(src, dst, affine_matrix, dst.size(), interpolation);
return dst;
}

Expand Down
5 changes: 5 additions & 0 deletions csrc/mmdeploy/utils/opencv/opencv_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,8 @@ MMDEPLOY_API cv::Mat Tensor2CVMat(const framework::Tensor& tensor);
MMDEPLOY_API framework::Mat CVMat2Mat(const cv::Mat& mat, PixelFormat format);
MMDEPLOY_API framework::Tensor CVMat2Tensor(const cv::Mat& mat);

MMDEPLOY_API Result<int> GetInterpolationMethod(const std::string_view& method);

/**
* @brief resize an image to specified size
*
Expand All @@ -29,6 +31,9 @@ MMDEPLOY_API framework::Tensor CVMat2Tensor(const cv::Mat& mat);
MMDEPLOY_API cv::Mat Resize(const cv::Mat& src, int dst_height, int dst_width,
const std::string& interpolation);

MMDEPLOY_API cv::Mat WarpAffine(const cv::Mat& src, const cv::Mat& affine_matrix, int dst_height,
int dst_width, int interpolation);

/**
* @brief crop an image
*
Expand Down
Loading

0 comments on commit 82c1edf

Please sign in to comment.