Skip to content

introlab/dotmask

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DOTMask

Dynamic Object Tracking and Masking is a simple and modular visual SLAM pipeline that to improves both localization and mapping in dynamic environments for mobile robotics.

https://arxiv.org/pdf/2008.00072v1.pdf

Requirements

Python 3.6.9 (& 2.7), Cuda 10.2, PyTorch, ROS Melodic, RTAB-Map

For Mask R-CNN install TensorFlow 1.3 and Keras 2.0.8

For better performances,install RTAB-Map with recomended/optional dependencies

Installation

  1. Project dependencies

    sudo apt-get install python3-pip python3-yaml python3-catkin-pkg-modules python3-rospkg-modules python3-empy
    pip3 install torch torchvision cython
    pip3 install opencv-python pillow pycocotools matplotlib scikit-learn rospkg catkin_pkg
  2. Necessary tricks to use python 3 with ros

    • This project is based on python3, however ROS has not changed to python3. When the next ROS distribution will be out on python3, this sequence will become obsolete.

    • Because of issues with python3 and ROS, the project uses a workspace dedicated to python3.

    mkdir catkin_ws_py3
    cd catkin_ws_py3
    mkdir src
    cd src
    catkin_init_workspace
    cd ..
    wstool init 
    wstool set -y src/geometry2 --git https://github.com/ros/geometry2 -v 0.6.5 
    wstool up 
    cd src
    git clone -b melodic https://github.com/ros-perception/vision_opencv.git 
    cd ..
    catkin_make --cmake-args -DCMAKE_BUILD_TYPE=Release -DPYTHON_EXECUTABLE=/usr/bin/python3  -DPYTHON_INCLUDE_DIR=/usr/include/python3.6m -DPYTHON_LIBRARY=/usr/lib/x86_64-linux-gnu/libpython3.6m.so 
    source devel/setup.bash
  3. Clone the repo

    cd catkin_ws_py3/src
    git clone https://github.com/introlab/dotmask.git
    cd ..
    catkin_make --cmake-args -DCMAKE_BUILD_TYPE=Release -DPYTHON_EXECUTABLE=/usr/bin/python3  -DPYTHON_INCLUDE_DIR=/usr/include/python3.6m -DPYTHON_LIBRARY=/usr/lib/x86_64-linux-gnu/libpython3.6m.so 
    source devel/setup.bash
  4. Download the NN

    • You need to download the desired neural network from their original repo.

    YOLACT and YOLACT++:

    cd catkin_ws_py3/src/dotmask/nn
    git clone https://github.com/dbolya/yolact.git
    • For YOLACT++ you need to compile DCNv2, this may require elevated permissions
      cd catkin_ws_py3/src/dotmask/nn/external/DCNv2
      python3 setup.py build develop

    Mask R-CNN:

    cd catkin_ws_py3/src/dotmask/nn
    git clone https://github.com/matterport/Mask_RCNN.git
  5. Download the NN weigths

    Download the weigths and place them in the "catkin_ws_py3/src/dotmask/weights" folder of this repo.

    • Those links are from the orignal repos

    YOLACT:

    YOLACT++:

    Mask R-CNN:

Benchmarking on TUM

  1. Start RTABMap-ros

    roslaunch dotmask dotmask-tum.launch
  2. Start DOTMask

    • With YOLACT
    source ~/catkin_ws_py3/devel/setup.bash
    cd ~/catkin_ws_py3/src/dotmask/src
    python3 dotmask_node.py --nn=yolact --input=tum
    • With YOLACT++
    source ~/catkin_ws_py3/devel/setup.bash
    cd ~/catkin_ws_py3/src/dotmask/src
    python3 dotmask_node.py --nn=yolact++ --input=tum
    • With Mask R-CNN
    source ~/catkin_ws_py3/devel/setup.bash
    cd ~/catkin_ws_py3/src/dotmask/src
    python3 dotmask_node.py --nn=mrcnn --input=tum
  3. Start a TUM rosbag

    • To run the rosbag with rtabmap, make sure to do the following steps for the desired sequence.
    wget http://vision.in.tum.de/rgbd/dataset/freiburg3/rgbd_dataset_freiburg3_walking_static.bag
    rosbag decompress rgbd_dataset_freiburg3_walking_static.bag
    wget https://gist.githubusercontent.com/matlabbe/897b775c38836ed8069a1397485ab024/raw/6287ce3def8231945326efead0c8a7730bf6a3d5/tum_rename_world_kinect_frame.py
    python tum_rename_world_kinect_frame.py rgbd_dataset_freiburg3_walking_static.bag
    • Run the rosbag
    rosbag play --clock rgbd_dataset_freiburg3_walking_static.bag -r 0.1

Run DOTMask on xtion

  • Opeeni2 is required to run the camera, install ros-melodic-openni2-launch with apt
  1. Start RTABMap-ros

    roslaunch dotmask dotmask-xtion.launch
  2. Start the xtion

    roslaunch openni2_launch openni2.launch depth_registration:=true
  3. Start DOTMask

    • With YOLACT
    source ~/catkin_ws_py3/devel/setup.bash
    cd ~/catkin_ws_py3/src/dotmask/src
    python3 dotmask_node.py --nn=yolact --input=xtion
    • With YOLACT++
    source ~/catkin_ws_py3/devel/setup.bash
    cd ~/catkin_ws_py3/src/dotmask/src
    python3 dotmask_node.py --nn=yolact++ --input=xtion
    • With Mask R-CNN
    source ~/catkin_ws_py3/devel/setup.bash
    cd ~/catkin_ws_py3/src/dotmask/src
    python3 dotmask_node.py --nn=mrcnn --input=xtion

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published