Skip to content
This repository has been archived by the owner on Aug 30, 2024. It is now read-only.

Gemma-7b&&Gemma-2b #171

Merged
merged 37 commits into from
Mar 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
37 commits
Select commit Hold shift + click to select a range
06b049c
half enable gemma
intellinjun Mar 6, 2024
39fe077
merge main
intellinjun Mar 11, 2024
5e397f5
enable gemma-7b
intellinjun Mar 13, 2024
8f33626
fix convert error
intellinjun Mar 15, 2024
5f4c8b5
enable gemma f32
intellinjun Mar 18, 2024
b8139c2
Merge branch 'main' into gemma
intellinjun Mar 18, 2024
6c9b67a
Merge branch 'gemma' of https://github.com/intel/neural-speed into gemma
intellinjun Mar 18, 2024
6d89370
enabel ffn fusion
intellinjun Mar 18, 2024
5adb0f0
enable gemma-2b
intellinjun Mar 18, 2024
5cc7906
Update gemma.cpp
intellinjun Mar 18, 2024
d75d41d
fix format error
intellinjun Mar 19, 2024
ae941d0
Merge branch 'gemma' of https://github.com/intel/neural-speed into gemma
intellinjun Mar 19, 2024
91a2d29
fix kv_cache_init
intellinjun Mar 19, 2024
bf92567
add n_embd_head_k to convert
intellinjun Mar 20, 2024
373f453
add test script
intellinjun Mar 20, 2024
8e6985a
Update model_utils.cpp
intellinjun Mar 20, 2024
fa33ef9
fix kv_cache
intellinjun Mar 20, 2024
a097712
Merge branch 'gemma' of https://github.com/intel/neural-speed into gemma
intellinjun Mar 20, 2024
f26f2a6
fix kv_cache init
intellinjun Mar 20, 2024
5b88374
fix profiling error
intellinjun Mar 20, 2024
28af858
Merge branch 'main' into gemma
intellinjun Mar 21, 2024
d819e9a
Update ne_layers.c
intellinjun Mar 21, 2024
a840af5
fix format error
intellinjun Mar 21, 2024
a67520a
updata supported_models
intellinjun Mar 21, 2024
488785a
updata supported_models
intellinjun Mar 21, 2024
91dc266
Merge branch 'main' into gemma
intellinjun Mar 21, 2024
a86d0bf
Update CMakeLists.txt
intellinjun Mar 21, 2024
8c9d0ab
fix binary inference error
intellinjun Mar 21, 2024
f07f60e
Merge branch 'gemma' of https://github.com/intel/neural-speed into gemma
intellinjun Mar 21, 2024
4bf56ff
Merge branch 'main' into gemma
intellinjun Mar 21, 2024
3106b1b
Update convert_chatglm.py
intellinjun Mar 21, 2024
3c6fc12
fix format error
intellinjun Mar 21, 2024
d1c5a9c
update test script
intellinjun Mar 21, 2024
2e7f56e
fix mha fusion error
intellinjun Mar 21, 2024
c09ff7a
Update convert_chatglm.py
intellinjun Mar 21, 2024
055f840
Update gemma_utils.cpp
intellinjun Mar 22, 2024
bb59f1f
Update gemma_utils.cpp
intellinjun Mar 22, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 15 additions & 1 deletion docs/supported_models.md
Original file line number Diff line number Diff line change
Expand Up @@ -276,7 +276,21 @@ Neural Speed supports the following models:
<td>Latest</td>
<td>2048</td>
</tr>
<tr>
<tr>
<td><a href="https://huggingface.co/google/gemma-2b-it" target="_blank" rel="noopener noreferrer">gemma-2b-it </a>,
intellinjun marked this conversation as resolved.
Show resolved Hide resolved
<a href="https://huggingface.co/google/gemma-7b" target="_blank" rel="noopener noreferrer">gemma-7b</a></td>
<td>✅</td>
intellinjun marked this conversation as resolved.
Show resolved Hide resolved
<td> </td>
<td> </td>
<td> </td>
<td>✅</td>
a32543254 marked this conversation as resolved.
Show resolved Hide resolved
<td> </td>
<td> </td>
<td> </td>
<td>Latest</td>
<td>8192</td>
</tr>
<tr>
<td><a href="https://huggingface.co/openai/whisper-tiny" target="_blank" rel="noopener noreferrer">Whisper-tiny</a>,
<a href="https://huggingface.co/openai/whisper-base" target="_blank" rel="noopener noreferrer">Whisper-base</a>
<a href="https://huggingface.co/openai/whisper-small" target="_blank" rel="noopener noreferrer">Whisper-small</a>
Expand Down
2 changes: 2 additions & 0 deletions neural_speed/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,8 @@ def __import_package(self, model_type):
import neural_speed.qwen_cpp as cpp_model
elif model_type == "phi":
import neural_speed.phi_cpp as cpp_model
elif model_type == "gemma":
import neural_speed.gemma_cpp as cpp_model
elif model_type == "stablelm":
import neural_speed.stablelm_cpp as cpp_model
elif model_type == "whisper":
Expand Down
5 changes: 5 additions & 0 deletions neural_speed/application/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,7 @@ compile_quant(quant_mistral quant_model.cpp mistral llama)
compile_quant(quant_mixtral quant_model.cpp mixtral llama)
compile_quant(quant_qwen quant_model.cpp qwen qwen)
compile_quant(quant_phi quant_model.cpp phi phi)
compile_quant(quant_gemma quant_model.cpp gemma gemma)
compile_quant(quant_stablelm quant_model.cpp stablelm stablelm)
compile_quant(quant_whisper quant_whisper.cpp whisper whisper)

Expand Down Expand Up @@ -99,6 +100,8 @@ set(mymap_stablelm 17)
set(mymap_whisper 18)
set(mymap_mixtral 19)
set(mymap_chatglm3 20)
set(mymap_gemma 21)



function(compile_run TARGET MAIN_CPP MAIN_PY MODEL_NAME MODEL_LIB)
Expand Down Expand Up @@ -135,8 +138,10 @@ compile_run(run_baichuan main_run.cpp main_pybind.cpp baichuan baichuan)
compile_run(run_mistral main_run.cpp main_pybind.cpp mistral llama)
compile_run(run_qwen main_run.cpp main_pybind.cpp qwen qwen)
compile_run(run_phi main_run.cpp main_pybind.cpp phi phi)
compile_run(run_gemma main_run.cpp main_pybind.cpp gemma gemma)
compile_run(run_stablelm main_run.cpp main_pybind.cpp stablelm stablelm)
compile_run(run_mixtral main_run.cpp main_pybind.cpp mixtral llama)


# speech recognition
compile_run(run_whisper audio_run.cpp whisper_pybind.cpp whisper whisper)
3 changes: 3 additions & 0 deletions neural_speed/application/main_pybind.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -924,6 +924,9 @@ PYBIND11_MODULE(mixtral_cpp, m)
#elif MODEL_NAME_ID == 20

PYBIND11_MODULE(chatglm3_cpp, m)
#elif MODEL_NAME_ID == 21

PYBIND11_MODULE(gemma_cpp, m)

#endif
{
Expand Down
2 changes: 1 addition & 1 deletion neural_speed/application/main_run.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -229,7 +229,7 @@ int main(int argc, char** argv) { // NOLINT

// tokenize the prompt
bool add_bos = false;
if (params.model_arch == MODEL_LLAMA) {
if (params.model_arch == MODEL_LLAMA || params.model_arch == MODEL_GEMMA) {
add_bos = true;
}

Expand Down
1 change: 1 addition & 0 deletions neural_speed/convert/convert_baichuan.py
Original file line number Diff line number Diff line change
Expand Up @@ -157,6 +157,7 @@ def baichuan13B_convert(model, tokenizer, dir_model, fname_out, ftype, hparams):
fout.write(struct.pack("i", hparams["intermediate_size"]))
fout.write(struct.pack("i", 0)) # n_experts
fout.write(struct.pack("i", 0)) # n_expert_used
fout.write(struct.pack("i", 0)) # n_embd_head_k for gemma
fout.write(struct.pack("f", hparams.get("rms_norm_eps", 1e-6))) # rms_norm_eps or layer_norm_eps
fout.write(struct.pack("f", 10000.0)) # freq_base
fout.write(struct.pack("f", 1.0)) # rope_factor
Expand Down
1 change: 1 addition & 0 deletions neural_speed/convert/convert_bloom.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
fout.write(struct.pack("i", 0))
fout.write(struct.pack("i", 0)) # n_experts
fout.write(struct.pack("i", 0)) # n_expert_used
fout.write(struct.pack("i", 0)) # n_embd_head_k for gemma
a32543254 marked this conversation as resolved.
Show resolved Hide resolved
fout.write(struct.pack("f", hparams.get("layer_norm_epsilon", 1e-5))) # rms_norm_eps or layer_norm_eps
fout.write(struct.pack("f", 10000.0)) # freq_base
fout.write(struct.pack("f", 1.0)) # rope_factor
Expand Down
5 changes: 3 additions & 2 deletions neural_speed/convert/convert_chatglm.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,8 +156,6 @@ def chatglm3_convert_gguf(model, tokenizer, dir_model, fname_out, ftype, hparams
gguf_file = fname_out
gguf_writer = gguf.GGUFWriter(gguf_file, "chatglm3")
gguf_writer.add_uint32('magic', 0x67676d66)
import pdb
pdb.set_trace()
gguf_writer.add_uint32('version', 1)
gguf_writer.add_uint32('n_vocab', hparams["padded_vocab_size"])
gguf_writer.add_embedding_length(hparams["hidden_size"])
Expand Down Expand Up @@ -561,6 +559,7 @@ def chatglm3_convert(model, tokenizer, dir_model, fname_out, ftype, hparams):
fout.write(struct.pack("i", 0))
fout.write(struct.pack("i", 0)) # n_experts
fout.write(struct.pack("i", 0)) # n_expert_used
fout.write(struct.pack("i", 0)) # n_embd_head_k for gemma
fout.write(struct.pack("f", hparams.get("layernorm_epsilon", 1e-5))) # rms_norm_eps or layer_norm_eps
fout.write(struct.pack("f", 10000.0)) # freq_base
fout.write(struct.pack("f", 1.0)) # rope_factor
Expand Down Expand Up @@ -711,6 +710,7 @@ def chatglm2_convert(model, tokenizer, dir_model, fname_out, ftype, hparams):
fout.write(struct.pack("i", 0))
fout.write(struct.pack("i", 0)) # n_experts
fout.write(struct.pack("i", 0)) # n_expert_used
fout.write(struct.pack("i", 0)) # n_embd_head_k for gemma
fout.write(struct.pack("f", hparams.get("layernorm_epsilon", 1e-5))) # rms_norm_eps or layer_norm_eps
fout.write(struct.pack("f", 10000.0)) # freq_base
fout.write(struct.pack("f", 1.0)) # rope_factor
Expand Down Expand Up @@ -862,6 +862,7 @@ def chatglm1_convert(model, tokenizer, dir_model, fname_out, ftype, hparams):
fout.write(struct.pack("i", 0))
fout.write(struct.pack("i", 0)) # n_experts
fout.write(struct.pack("i", 0)) # n_expert_used
fout.write(struct.pack("i", 0)) # n_embd_head_k for gemma
fout.write(struct.pack("f", hparams.get("layernorm_epsilon", 1e-5))) # rms_norm_eps or layer_norm_eps

fout.write(struct.pack("f", 10000.0)) # freq_base
Expand Down
1 change: 1 addition & 0 deletions neural_speed/convert/convert_dolly.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,6 +120,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
fout.write(struct.pack("i", 0))
fout.write(struct.pack("i", 0)) # n_experts
fout.write(struct.pack("i", 0)) # n_expert_used
fout.write(struct.pack("i", 0)) # n_embd_head_k for gemma
fout.write(struct.pack("f", hparams.get("layer_norm_eps", 1e-5))) # rms_norm_eps or layer_norm_eps
fout.write(struct.pack("f", 10000.0)) # freq_base
fout.write(struct.pack("f", 1.0)) # rope_factor
Expand Down
1 change: 1 addition & 0 deletions neural_speed/convert/convert_falcon.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,6 +113,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
fout.write(struct.pack("i", 0))
fout.write(struct.pack("i", 0)) # n_experts
fout.write(struct.pack("i", 0)) # n_expert_used
fout.write(struct.pack("i", 0)) # n_embd_head_k for gemma
fout.write(struct.pack("f", hparams.get("layer_norm_epsilon", 1e-5))) # rms_norm_eps or layer_norm_eps
fout.write(struct.pack("f", 10000.0)) # freq_base
fout.write(struct.pack("f", 1.0)) # rope_factor
Expand Down
195 changes: 195 additions & 0 deletions neural_speed/convert/convert_gemma.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
# Copyright (c) 2023 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Convert Hugging Face fine-tuned gpt-neox-like models to ne format
#
# Usage:
#
# python3 models/convert-h5-to-ne.py
#
# This script is similar to "convert-pt-to-ne.py"
#

import io
import os
import sys
import struct
import json
import code
import torch
import numpy as np
from pathlib import Path
import argparse
from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Literal, Optional, Sequence, Tuple, TypeVar,
Union)



# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))


def main(args_in: Optional[List[str]] = None) -> None:
parser = argparse.ArgumentParser(description="Convert a model to a NE compatible file")
parser.add_argument("--outtype", choices=["f32", "f16"], help="output format (default: based on input)")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("--model_hub", choices=["huggingface","modelscope"],
default="huggingface", help="hub to load model")
parser.add_argument("model", type=Path, help="directory containing model file")
args = parser.parse_args(args_in)

dir_model = args.model.as_posix()
fname_out = args.outfile.as_posix()

# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
ftype = 0
if args.outtype == "f16":
ftype = 1
if args.model_hub == "modelscope":
from modelscope import AutoModelForCausalLM, AutoTokenizer
else:
from transformers import AutoModelForCausalLM, AutoTokenizer
print("Loading model: ", dir_model)
model = AutoModelForCausalLM.from_pretrained(dir_model)
tokenizer = AutoTokenizer.from_pretrained(dir_model)
model.eval()
for p in model.parameters():
p.requires_grad = False
hparams = model.config.to_dict()
print("Model loaded: ", dir_model)

fout = open(fname_out, "wb")

# 0x67676d6c is unversioned ne
# 0x67676d66 is versioned ggmf (requires token scores)
ne_file_magic = 0x67676d66
#ne_file_version = 0x00000001 # v1

fout.write(struct.pack("i", ne_file_magic)) # magic: ne in hex
fout.write(struct.pack("i", 1))
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("i", hparams["hidden_size"]))
fout.write(struct.pack("i", hparams["intermediate_size"])) # dummy data
fout.write(struct.pack("i", hparams["num_attention_heads"]))
fout.write(struct.pack("i", hparams["num_key_value_heads"])) # multi-query attention
fout.write(struct.pack("i", hparams["num_hidden_layers"]))
fout.write(struct.pack("i", hparams["head_dim"]))
fout.write(struct.pack("i", ftype))
fout.write(
struct.pack("i", hparams["seq_length"] if "seq_length" in hparams else hparams["max_position_embeddings"]))
fout.write(struct.pack("f", 0.0))
fout.write(struct.pack("f", 0.0))
fout.write(struct.pack("i", 0))
fout.write(struct.pack("i", 0)) # word_embed_proj_dim (for opt)
fout.write(struct.pack("i", 0)) # do_layer_norm_before (for opt)

fout.write(struct.pack("i", 0))
fout.write(struct.pack("i", hparams["intermediate_size"]))
fout.write(struct.pack("i", 0))
fout.write(struct.pack("i", 0)) # n_experts
fout.write(struct.pack("i", 0)) # n_expert_used
fout.write(struct.pack("i", hparams["head_dim"])) # n_embd_head_k
fout.write(struct.pack("f", hparams.get("rms_norm_eps", 1e-6))) # rms norm eps
fout.write(struct.pack("f", 10000.0)) # freq_base
fout.write(struct.pack("f", 1.0)) # rope_factor

fout.write(struct.pack("f", 0.0)) # config.json "rope_scaling.factor", not enabled
fout.write(struct.pack("i", 0)) # rope_scaling.original_max_position_embeddings
fout.write(struct.pack("i", 0)) # params["rope_scaling"]["type"] =="yarn" else 0))
fout.write(struct.pack("i", hparams["bos_token_id"]))
fout.write(struct.pack("i", hparams["eos_token_id"]))
fout.write(struct.pack("i", tokenizer.pad_token_id if tokenizer.pad_token_id is not None else -1))
fout.write(struct.pack("i", tokenizer.sep_token_id if tokenizer.sep_token_id is not None else -1))

for i in range(hparams["vocab_size"]):
if i < tokenizer.vocab_size:
text = tokenizer.decode([i]).encode('utf-8')
fout.write(struct.pack("i", len(text)))
fout.write(text)
fout.write(struct.pack("f", 0.0 - i))
else:
text = tokenizer.decode([tokenizer.vocab_size - 1]).encode('utf-8')
fout.write(struct.pack("i", len(text)))
fout.write(text)
fout.write(struct.pack("f", -10000))

list_vars = model.state_dict()

print(hparams)

for name in list_vars.keys():
# No gradients for these
list_vars[name].requires_grad = False
src = name
nn = name

print(src, ' -> ', name)
data = list_vars[src].squeeze().numpy()
data = data.astype(np.float32)

n_dims = len(data.shape)
print(name, n_dims, data.shape)

# default type is fp32
ftype_cur = 0
if ftype == 1 and n_dims > 1:
print(" Converting to float16", data.shape, data[:3, :3].tolist())
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32", data.shape, data[:3, :3].tolist() if n_dims > 1 else data[:3].tolist())
data = data.astype(np.float32)
# gemma_rms:
# output = self._norm(x.float()).type_as(x)
# return output * (1 + self.weight)
if "norm" in name:
data = data + 1
str = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
print(str)
fout.write(str)

# data
data.tofile(fout)

fout.close()

print("Done. Output file: " + fname_out)
print("")


if __name__ == '__main__':
main()
1 change: 1 addition & 0 deletions neural_speed/convert/convert_gptj.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
fout.write(struct.pack("i", 0))
fout.write(struct.pack("i", 0)) # n_experts
fout.write(struct.pack("i", 0)) # n_expert_used
fout.write(struct.pack("i", 0)) # n_embd_head_k for gemma
fout.write(struct.pack("f", hparams.get("layer_norm_epsilon", 1e-5))) # rms_norm_eps or layer_norm_eps
fout.write(struct.pack("f", 10000.0)) # freq_base
fout.write(struct.pack("f", 1.0)) # rope_factor
Expand Down
1 change: 1 addition & 0 deletions neural_speed/convert/convert_gptneox.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,6 +121,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
fout.write(struct.pack("i", 0))
fout.write(struct.pack("i", 0)) # n_experts
fout.write(struct.pack("i", 0)) # n_expert_used
fout.write(struct.pack("i", 0)) # n_embd_head_k for gemma
fout.write(struct.pack("f", hparams.get("layer_norm_eps", 1e-5))) # rms_norm_eps or layer_norm_eps
fout.write(struct.pack("f", 10000.0)) # freq_base
fout.write(struct.pack("f", 1.0)) # rope_factor
Expand Down
1 change: 1 addition & 0 deletions neural_speed/convert/convert_llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -1090,6 +1090,7 @@ def write_file_header(self, params: Params, file_type: NEFileType) -> None:

self.fout.write(struct.pack("i", 0)) # n_experts
self.fout.write(struct.pack("i", 0)) # n_expert_used
self.fout.write(struct.pack("i", 0)) # n_embd_head_k for gemma
self.fout.write(struct.pack("f", params.rms_norm_eps))
self.fout.write(struct.pack("f", params.rope_theta))
self.fout.write(struct.pack("f", params.rope_scale))
Expand Down
1 change: 1 addition & 0 deletions neural_speed/convert/convert_mistral.py
Original file line number Diff line number Diff line change
Expand Up @@ -1064,6 +1064,7 @@ def write_file_header(self, params: Params, file_type: NEFileType) -> None:

self.fout.write(struct.pack("i", 0)) # n_experts
self.fout.write(struct.pack("i", 0)) # n_expert_used
self.fout.write(struct.pack("i", 0)) # n_embd_head_k for gemma
self.fout.write(struct.pack("f", params.rms_norm_eps))
self.fout.write(struct.pack("f", params.rope_theta))
self.fout.write(struct.pack("f", params.rope_scale))
Expand Down
1 change: 1 addition & 0 deletions neural_speed/convert/convert_mixtral.py
Original file line number Diff line number Diff line change
Expand Up @@ -1066,6 +1066,7 @@ def write_file_header(self, params: Params, file_type: NEFileType) -> None:
self.fout.write(struct.pack("i", 0))
self.fout.write(struct.pack("i", 8))
self.fout.write(struct.pack("i", 2))
self.fout.write(struct.pack("i", 0)) # n_embd_head_k for gemma
self.fout.write(struct.pack("f", params.rms_norm_eps))
self.fout.write(struct.pack("f", params.rope_theta))
self.fout.write(struct.pack("f", params.rope_scale))
Expand Down
1 change: 1 addition & 0 deletions neural_speed/convert/convert_mpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,6 +102,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
fout.write(struct.pack("i", 0))
fout.write(struct.pack("i", 0)) # n_experts
fout.write(struct.pack("i", 0)) # n_expert_used
fout.write(struct.pack("i", 0)) # n_embd_head_k for gemma
fout.write(struct.pack("f", hparams.get("layer_norm_eps", 1e-5))) # rms_norm_eps or layer_norm_eps
fout.write(struct.pack("f", 10000.0)) # freq_base
fout.write(struct.pack("f", 1.0)) # rope_factor
Expand Down
1 change: 1 addition & 0 deletions neural_speed/convert/convert_opt.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,7 @@ def main(args_in: Optional[List[str]] = None) -> None:
fout.write(struct.pack("i", 0))
fout.write(struct.pack("i", 0)) # n_experts
fout.write(struct.pack("i", 0)) # n_expert_used
fout.write(struct.pack("i", 0)) # n_embd_head_k for gemma
fout.write(struct.pack("f", hparams.get("layer_norm_eps", 1e-5))) # rms_norm_eps or layer_norm_eps
fout.write(struct.pack("f", 10000.0)) # freq_base
fout.write(struct.pack("f", 1.0)) # rope_factor
Expand Down
Loading
Loading