Skip to content
This repository has been archived by the owner on Aug 30, 2024. It is now read-only.

[GPTQ Enhence] Support Mistral-GPTQ #144

Merged
merged 3 commits into from
Mar 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion neural_speed/convert/convert_mistral.py
Original file line number Diff line number Diff line change
Expand Up @@ -317,7 +317,7 @@ def __repr__(self) -> str:

def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
if n_head_kv is not None and n_head != n_head_kv:
n_head //= n_head_kv
n_head = n_head_kv
return (weights.reshape(n_head_kv, 2, weights.shape[0] // n_head_kv // 2,
*weights.shape[1:]).swapaxes(1, 2).reshape(weights.shape))

Expand Down
6 changes: 0 additions & 6 deletions neural_speed/convert/convert_quantized_gptj.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,12 +23,6 @@
from transformers import AutoTokenizer


def permute_func(weights, n_head: int, n_head_kv: int):
if n_head_kv is not None and n_head != n_head_kv:
n_head //= n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2,
*weights.shape[1:]).swapaxes(1, 2).reshape(weights.shape))

def convert_to_qx_bestla_tensor(src_name, dst_name, model, fout, q_config):
# unpack weight and repack into 3bits / 4bits BestLA format
import neural_speed.llama_cpp as cpp_model
Expand Down
149 changes: 118 additions & 31 deletions neural_speed/convert/convert_quantized_mistral.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,12 +22,84 @@
import argparse
from common import *


def permute_func(weights, n_head: int, n_head_kv: int):
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head_kv, 2, weights.shape[0] // n_head_kv // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
return (weights.reshape(n_head_kv, 2, weights.shape[0] // n_head_kv // 2,
*weights.shape[1:]).swapaxes(1, 2).reshape(weights.shape))


def convert_to_q4_bestla_tensor(src_name, dst_name, model, fout, q_config, n_head, n_head_kv=0, permute_func=None):
# unpack weight and repack into jblas format
import neural_speed.llama_cpp as cpp_model
if ".weight" in src_name:
src_name = src_name.replace(".weight", "")
qzeros = model[f"{src_name}.qzeros"]
zeros = qzeros_to_zeros(qzeros)
scales = model[f"{src_name}.scales"]
qweight = model[f"{src_name}.qweight"]

int_weight, gptq_scales, gptq_zeros = unpack_weight(qweight, scales, qzeros, q_config)
int_weight = int_weight.view(-1, int_weight.shape[-1])

# shuffle weight in GPTQ when act order is on
if 'desc_act' in q_config and q_config['desc_act']:
g_idx = model[f"{src_name}.g_idx"]
int_weight2 = int_weight.clone()
group_size = q_config['group_size']
group_dict = {}
for i in range(len(g_idx)):
group_idx = g_idx[i].item()
if group_idx not in group_dict:
target_idx = group_idx * group_size
group_dict[group_idx] = 0
else:
group_dict[group_idx] = group_dict[group_idx] + 1
target_idx = group_idx * group_size + group_dict[group_idx]
int_weight2[target_idx] = int_weight[i]
int_weight = int_weight2

# permute_func for llama-like model
if permute_func:
int_weight = permute_func(int_weight.t(), n_head, n_head_kv).t().contiguous()
gptq_scales = permute_func(gptq_scales.t(), n_head, n_head_kv).t().contiguous()
gptq_zeros = permute_func(gptq_zeros.t(), n_head, n_head_kv).t().contiguous()

shape = int_weight.shape
write_header(fout, shape[::-1], dst_name, GGML_QJBLAS_TYPE)

weight_dtype = "int8"
if q_config['bits'] == 4:
int_weight = (int_weight - 8) * 16
gptq_scales = gptq_scales / 16
gptq_zeros = (gptq_zeros - 8) * 16
weight_dtype == "int4"

dst = np.zeros((int_weight.shape[0], int_weight.shape[1] * 4), dtype=np.int8)
int_weight = np.ascontiguousarray(int_weight.numpy())
gptq_scales = np.ascontiguousarray((gptq_scales.float()).numpy())
if q_config['sym']:
gptq_zeros = np.empty(0, dtype=np.int8)
else:
gptq_zeros = np.ascontiguousarray(gptq_zeros.numpy())
if 'desc_act' in q_config and q_config['desc_act']:
g_idx = np.ascontiguousarray(g_idx.numpy())
else:
g_idx = np.empty(0, dtype=np.int32)

# pack int weight in bestla format
byte_size = cpp_model.Model.np_bestla_qpack(int_weight,
gptq_scales,
gptq_zeros,
g_idx,
dst,
weight_dtype=weight_dtype,
group_size=q_config['group_size'],
alg="sym" if q_config['sym'] else "asym",
compute_dtype="int8")
dst.flatten()[:byte_size].tofile(fout)
print(f"converting {dst_name} quantized tensor to bestla q4 block")


def main(args_in: Optional[List[str]] = None) -> None:
Expand All @@ -49,26 +121,27 @@ def main(args_in: Optional[List[str]] = None) -> None:
n_layer = config["num_hidden_layers"]
n_head = config["num_attention_heads"]
ffn_hidden_size = config["intermediate_size"]
rope_scale = 1
if "rope_scaling" in config and config["rope_scaling"] is not None:
rope_scale = config["rope_scaling"]["factor"] if "factor" in config["rope_scaling"] else 1

# hardcoded:
n_mult = 256
# 1. write head and params
f.write(b"ggjt"[::-1]) # magic
rope_scale = 1
if "rope_scaling" in config and config["rope_scaling"] is not None:
rope_scale = config["rope_scaling"]["factor"] if "factor" in config["rope_scaling"] else 1

n_head = n_head
n_head_kv = 8
values = [
1, # file version
n_vocab,
n_embd,
256, #hparams.n_mult,
256, #hparams.n_mult,
n_head,
n_head_kv, # n_head_kv (multi_query attention)
n_head_kv, # n_head_kv (multi_query attention)
n_layer,
n_embd // n_head, # rot (obsolete)
0, #file_type.value, # TODO
0, #file_type.value, # TODO
]

f.write(struct.pack("i" * len(values), *values))
Expand All @@ -87,6 +160,10 @@ def main(args_in: Optional[List[str]] = None) -> None:
f.write(struct.pack("f", config["rope_theta"] if "rope_theta" in config else 10000))
f.write(struct.pack("f", rope_scale))

f.write(struct.pack("f", 0.0)) # config.json "rope_scaling.factor", not enabled
f.write(struct.pack("i", 0)) # rope_scaling.original_max_position_embeddings
f.write(struct.pack("i", 0)) # params["rope_scaling"]["type"] =="yarn" else 0))

# TODO, bos_token_id = 0 in https://huggingface.co/decapoda-research/llama-7b-hf/blob/main/config.json
# but bos_token_id = 1 in llama.cpp
f.write(struct.pack("i", 1))
Expand All @@ -110,31 +187,41 @@ def main(args_in: Optional[List[str]] = None) -> None:
convert_to_fp32_tensor("lm_head.weight", "output.weight", list_vars, f)

for i in range(n_layer):
convert_q4_bestla_tensor(f"model.layers.{i}.self_attn.q_proj",
f"layers.{i}.attention.wq.weight", list_vars, f, quantize_config, n_head, n_head,
permute_func=permute_func)
convert_q4_bestla_tensor(f"model.layers.{i}.self_attn.k_proj",
f"layers.{i}.attention.wk.weight", list_vars, f, quantize_config, n_head, n_head_kv,
permute_func=permute_func)
convert_q4_bestla_tensor(f"model.layers.{i}.self_attn.v_proj",
f"layers.{i}.attention.wv.weight", list_vars, f, quantize_config, n_head)
convert_q4_bestla_tensor(f"model.layers.{i}.self_attn.o_proj",
f"layers.{i}.attention.wo.weight", list_vars, f, quantize_config, n_head)
convert_q4_bestla_tensor(f"model.layers.{i}.mlp.gate_proj",
f"layers.{i}.feed_forward.w1.weight", list_vars, f, quantize_config, n_head)
convert_q4_bestla_tensor(f"model.layers.{i}.mlp.down_proj",
f"layers.{i}.feed_forward.w2.weight", list_vars, f, quantize_config, n_head)
convert_q4_bestla_tensor(f"model.layers.{i}.mlp.up_proj",
f"layers.{i}.feed_forward.w3.weight", list_vars, f, quantize_config, n_head)

convert_to_fp32_tensor(f"model.layers.{i}.input_layernorm.weight",
f"layers.{i}.attention_norm.weight", list_vars, f)
convert_to_fp32_tensor(f"model.layers.{i}.post_attention_layernorm.weight",
f"layers.{i}.ffn_norm.weight", list_vars, f)

convert_to_q4_bestla_tensor(f"model.layers.{i}.self_attn.q_proj",
f"layers.{i}.attention.wq.weight",
list_vars,
f,
quantize_config,
n_head,
n_head,
permute_func=permute_func)
convert_to_q4_bestla_tensor(f"model.layers.{i}.self_attn.k_proj",
f"layers.{i}.attention.wk.weight",
list_vars,
f,
quantize_config,
n_head,
n_head_kv,
permute_func=permute_func)
convert_to_q4_bestla_tensor(f"model.layers.{i}.self_attn.v_proj", f"layers.{i}.attention.wv.weight", list_vars,
f, quantize_config, n_head)
convert_to_q4_bestla_tensor(f"model.layers.{i}.self_attn.o_proj", f"layers.{i}.attention.wo.weight", list_vars,
f, quantize_config, n_head)
convert_to_q4_bestla_tensor(f"model.layers.{i}.mlp.gate_proj", f"layers.{i}.feed_forward.w1.weight", list_vars,
f, quantize_config, n_head)
convert_to_q4_bestla_tensor(f"model.layers.{i}.mlp.down_proj", f"layers.{i}.feed_forward.w2.weight", list_vars,
f, quantize_config, n_head)
convert_to_q4_bestla_tensor(f"model.layers.{i}.mlp.up_proj", f"layers.{i}.feed_forward.w3.weight", list_vars, f,
quantize_config, n_head)

convert_to_fp32_tensor(f"model.layers.{i}.input_layernorm.weight", f"layers.{i}.attention_norm.weight",
list_vars, f)
convert_to_fp32_tensor(f"model.layers.{i}.post_attention_layernorm.weight", f"layers.{i}.ffn_norm.weight",
list_vars, f)

f.close()
print(f"Success! saved as {out_path}")


if __name__ == '__main__':
main()
Loading