This repository has been archived by the owner on Aug 30, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 38
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[LLM Runtime] Enable phi-2&phi-1.5&phi-1 (#78)
- Loading branch information
1 parent
ea4b713
commit c212d89
Showing
15 changed files
with
1,005 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,296 @@ | ||
# Copyright (c) 2023 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# Convert Hugging Face fine-tuned gpt-neox-like models to ne format | ||
# | ||
# Usage: | ||
# | ||
# python3 models/convert-h5-to-ne.py | ||
# | ||
# This script is similar to "convert-pt-to-ne.py" | ||
# | ||
|
||
import struct | ||
import numpy as np | ||
from pathlib import Path | ||
import argparse | ||
from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Literal, Optional, Sequence, Tuple, TypeVar, | ||
Union) | ||
from transformers import AutoModelForCausalLM, AutoTokenizer | ||
import gguf | ||
|
||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py | ||
def bytes_to_unicode(): | ||
""" | ||
Returns list of utf-8 byte and a corresponding list of unicode strings. | ||
The reversible bpe codes work on unicode strings. | ||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | ||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | ||
This is a significant percentage of your normal, say, 32K bpe vocab. | ||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | ||
And avoids mapping to whitespace/control characters the bpe code barfs on. | ||
""" | ||
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) | ||
cs = bs[:] | ||
n = 0 | ||
for b in range(2**8): | ||
if b not in bs: | ||
bs.append(b) | ||
cs.append(2**8 + n) | ||
n += 1 | ||
cs = [chr(n) for n in cs] | ||
return dict(zip(bs, cs)) | ||
|
||
def phi_convert_gguf(model, tokenizer, dir_model, fname_out, ftype, hparams): | ||
print("phi.gguf converting: ") | ||
list_vars = model.state_dict() | ||
n_rot = int(hparams["partial_rotary_factor"]*hparams["hidden_size"]/hparams["num_attention_heads"]) | ||
for name in list_vars.keys(): | ||
print(name, list_vars[name].shape, list_vars[name].dtype) | ||
|
||
print(hparams) | ||
|
||
gguf_file = fname_out + '.gguf' | ||
gguf_writer = gguf.GGUFWriter(gguf_file, "phi") | ||
|
||
gguf_writer.add_uint32('magic', 0x67676d66) | ||
gguf_writer.add_uint32('version', 1) | ||
gguf_writer.add_uint32('n_vocab', hparams["vocab_size"]) | ||
gguf_writer.add_embedding_length(hparams["hidden_size"]) | ||
gguf_writer.add_head_count(hparams["num_attention_heads"]) | ||
gguf_writer.add_head_count_kv(hparams["num_key_value_heads"]) | ||
|
||
gguf_writer.add_block_count(hparams["num_hidden_layers"]) | ||
gguf_writer.add_rope_dimension_count(n_rot) | ||
gguf_writer.add_uint32('ftype', ftype) | ||
gguf_writer.add_context_length(hparams["max_position_embeddings"]) | ||
gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) | ||
|
||
gguf_writer.add_bos_token_id(tokenizer.bos_token_id) | ||
gguf_writer.add_eos_token_id(tokenizer.eos_token_id) | ||
gguf_writer.add_pad_token_id(tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0) | ||
gguf_writer.add_sep_token_id(tokenizer.sep_token_id if tokenizer.sep_token_id is not None else 0) | ||
|
||
def write_vocab_gguf(dir_model, hparams, gguf_writer): | ||
tokens: list[bytearray] = [] | ||
toktypes: list[int] = [] | ||
|
||
from transformers import AutoTokenizer # type: ignore[attr-defined] | ||
tokenizer = AutoTokenizer.from_pretrained(dir_model) | ||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab)) | ||
assert max(tokenizer.vocab.values()) < vocab_size | ||
|
||
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()} | ||
added_vocab = tokenizer.get_added_vocab() | ||
|
||
for i in range(vocab_size): | ||
if i not in reverse_vocab: | ||
pad_token = f"[PAD{i}]".encode('utf-8') | ||
tokens.append(bytearray(pad_token)) | ||
toktypes.append(gguf.TokenType.USER_DEFINED) | ||
elif reverse_vocab[i] in added_vocab: | ||
tokens.append(reverse_vocab[i]) | ||
if tokenizer.added_tokens_decoder[i].special: | ||
toktypes.append(gguf.TokenType.CONTROL) | ||
else: | ||
toktypes.append(gguf.TokenType.USER_DEFINED) | ||
else: | ||
tokens.append(reverse_vocab[i]) | ||
toktypes.append(gguf.TokenType.NORMAL) | ||
|
||
gguf_writer.add_tokenizer_model("gpt2") | ||
gguf_writer.add_token_list(tokens) | ||
gguf_writer.add_token_types(toktypes) | ||
|
||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True) | ||
special_vocab.add_to_gguf(gguf_writer) | ||
|
||
write_vocab_gguf(dir_model, hparams, gguf_writer) | ||
|
||
# tensor info | ||
print("gguf: get tensor metadata") | ||
for name in list_vars.keys(): | ||
data = list_vars[name].squeeze().numpy() | ||
|
||
print("Processing variable: " + name + " with shape: ", data.shape) | ||
if 'inv_freq' in name: | ||
continue | ||
|
||
n_dims = len(data.shape) | ||
|
||
# ftype == 0 -> float32, ftype == 1 -> float16 | ||
ftype_cur = 0 | ||
if ftype != 0: | ||
if name[-7:] == ".weight" and n_dims == 2: | ||
print(" Converting to float16") | ||
data = data.astype(np.float16) | ||
ftype_cur = 1 | ||
else: | ||
print(" Converting to float32") | ||
data = data.astype(np.float32) | ||
ftype_cur = 0 | ||
else: | ||
if data.dtype != np.float32: | ||
print(" Converting to float32") | ||
data = data.astype(np.float32) | ||
ftype_cur = 0 | ||
|
||
# print(f"[{i+1:{padi}d}/{len(model)}] | ||
# Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4}") | ||
|
||
gguf_writer.add_tensor(name, data) | ||
|
||
print("gguf: write header") | ||
gguf_writer.write_header_to_file() | ||
print("gguf: write metadata") | ||
gguf_writer.write_kv_data_to_file() | ||
print("gguf: write tensors") | ||
gguf_writer.write_tensors_to_file() | ||
|
||
gguf_writer.close() | ||
|
||
print("Done. Output file: " + fname_out) | ||
print("") | ||
|
||
def phi_convert(model, tokenizer, dir_model, fname_out, ftype, hparams): | ||
n_rot = int(hparams["partial_rotary_factor"]*hparams["hidden_size"]/hparams["num_attention_heads"]) | ||
model.eval() | ||
for p in model.parameters(): | ||
p.requires_grad = False | ||
hparams = model.config.to_dict() | ||
print("Model loaded: ", dir_model) | ||
|
||
fout = open(fname_out, "wb") | ||
|
||
# 0x67676d6c is unversioned ne | ||
# 0x67676d66 is versioned ggmf (requires token scores) | ||
ne_file_magic = 0x67676d66 | ||
#ne_file_version = 0x00000001 # v1 | ||
|
||
fout.write(struct.pack("i", ne_file_magic)) # magic: ne in hex | ||
fout.write(struct.pack("i", 1)) | ||
fout.write(struct.pack("i", hparams["vocab_size"])) | ||
fout.write(struct.pack("i", hparams["hidden_size"])) | ||
fout.write(struct.pack("i", hparams["intermediate_size"])) # dummy data | ||
fout.write(struct.pack("i", hparams["num_attention_heads"])) | ||
fout.write(struct.pack("i", hparams["num_key_value_heads"])) # multi-query attention | ||
fout.write(struct.pack("i", hparams["num_hidden_layers"])) | ||
fout.write(struct.pack("i", n_rot)) | ||
fout.write(struct.pack("i", ftype)) | ||
fout.write(struct.pack("i", hparams["max_position_embeddings"])) | ||
fout.write(struct.pack("f", 0.0)) | ||
fout.write(struct.pack("f", 0.0)) | ||
fout.write(struct.pack("i", 0)) | ||
fout.write(struct.pack("i", 0)) # word_embed_proj_dim (for opt) | ||
fout.write(struct.pack("i", 0)) # do_layer_norm_before (for opt) | ||
|
||
fout.write(struct.pack("i", 0)) | ||
fout.write(struct.pack("i", 0)) | ||
fout.write(struct.pack("i", 0)) | ||
fout.write(struct.pack("f", hparams.get("rms_norm_eps", 1e-6))) # rms norm eps | ||
fout.write(struct.pack("f", 10000.0)) # freq_base | ||
fout.write(struct.pack("f", 1.0)) # rope_factor | ||
fout.write(struct.pack("i", tokenizer.bos_token_id if tokenizer.bos_token_id is not None else -1)) | ||
fout.write(struct.pack("i", tokenizer.eos_token_id if tokenizer.eos_token_id is not None else -1)) | ||
fout.write(struct.pack("i", tokenizer.pad_token_id if tokenizer.pad_token_id is not None else -1)) | ||
fout.write(struct.pack("i", tokenizer.sep_token_id if tokenizer.sep_token_id is not None else -1)) | ||
|
||
for i in range(hparams["vocab_size"]): | ||
if i < tokenizer.vocab_size: | ||
text = tokenizer.decode([i]).encode('utf-8') | ||
fout.write(struct.pack("i", len(text))) | ||
fout.write(text) | ||
fout.write(struct.pack("f", 0.0 - i)) | ||
else: | ||
text = tokenizer.decode([tokenizer.vocab_size - 1]).encode('utf-8') | ||
fout.write(struct.pack("i", len(text))) | ||
fout.write(text) | ||
fout.write(struct.pack("f", -10000)) | ||
|
||
list_vars = model.state_dict() | ||
|
||
print(hparams) | ||
|
||
for name in list_vars.keys(): | ||
# No gradients for these | ||
list_vars[name].requires_grad = False | ||
src = name | ||
print(src, ' -> ', name) | ||
data = list_vars[src].squeeze().numpy() | ||
data = data.astype(np.float32) | ||
|
||
n_dims = len(data.shape) | ||
print(name, n_dims, data.shape) | ||
|
||
# default type is fp32 | ||
ftype_cur = 0 | ||
if ftype == 1 and n_dims > 1: | ||
print(" Converting to float16", data.shape, data[:3, :3].tolist()) | ||
data = data.astype(np.float16) | ||
ftype_cur = 1 | ||
else: | ||
print(" Converting to float32", data.shape, data[:3, :3].tolist() if n_dims > 1 else data[:3].tolist()) | ||
data = data.astype(np.float32) | ||
|
||
# header | ||
str = name.encode('utf-8') | ||
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) | ||
for i in range(n_dims): | ||
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) | ||
print(str) | ||
fout.write(str) | ||
|
||
# data | ||
data.tofile(fout) | ||
|
||
fout.close() | ||
|
||
print("Done. Output file: " + fname_out) | ||
print("") | ||
|
||
def main(args_in: Optional[List[str]] = None) -> None: | ||
parser = argparse.ArgumentParser(description="Convert a model to a NE compatible file") | ||
parser.add_argument("--outtype", choices=["f32", "f16"], help="output format (default: based on input)") | ||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") | ||
parser.add_argument("model", type=Path, help="directory containing model file") | ||
parser.add_argument("--format", | ||
type=str, | ||
default="NE", | ||
choices=["NE", "GGUF"], | ||
help="convert to the GGUF or NE format") | ||
args = parser.parse_args(args_in) | ||
|
||
dir_model = args.model.as_posix() | ||
fname_out = args.outfile.as_posix() | ||
|
||
# possible data types | ||
# ftype == 0 -> float32 | ||
# ftype == 1 -> float16 | ||
ftype = 0 | ||
if args.outtype == "f16": | ||
ftype = 1 | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) | ||
print("Loading model: ", dir_model) | ||
model = AutoModelForCausalLM.from_pretrained(dir_model, trust_remote_code=True) | ||
hparams = model.config.to_dict() | ||
if args.format == "GGUF": | ||
phi_convert_gguf(model, tokenizer, dir_model, fname_out, ftype, hparams) | ||
else: | ||
phi_convert(model, tokenizer, dir_model, fname_out, ftype, hparams) | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
main() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.