Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove debug code. #1897

Merged
merged 1 commit into from
Jul 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -216,8 +216,6 @@ def _process_dataset(self):
self.label = []
self.onnx_inputs = []
for inputs in self.dataset:
# import pdb;
# pdb.set_trace()
onnx_inputs = []
has_labels = all(inputs.get(k) is not None for k in self.label_names)
if has_labels:
Expand All @@ -237,8 +235,6 @@ def _process_dataset(self):
}
"""
for key in self.onnx_input_names:
# import pdb;
# pdb.set_trace()
if key in inputs:
# onnx_inputs[key] = np.array([inputs[key]])
onnx_inputs.append(np.array(inputs[key]))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -216,8 +216,6 @@ def _process_dataset(self):
self.label = []
self.onnx_inputs = []
for inputs in self.dataset:
# import pdb;
# pdb.set_trace()
onnx_inputs = []
has_labels = all(inputs.get(k) is not None for k in self.label_names)
if has_labels:
Expand All @@ -237,8 +235,6 @@ def _process_dataset(self):
}
"""
for key in self.onnx_input_names:
# import pdb;
# pdb.set_trace()
if key in inputs:
# onnx_inputs[key] = np.array([inputs[key]])
onnx_inputs.append(np.array(inputs[key]))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,6 @@ def _compute_padding(self, input, dim):
return additional_padding, total_padding

def forward(self, input):
#import pdb; pdb.set_trace()
if self.padding == "VALID":
return F.conv2d(
input,
Expand Down Expand Up @@ -180,7 +179,6 @@ def decode_boxes(rel_codes, boxes, weights):
dh = dh / wh

pred_ctr_x = dx * widths + ctr_x
#import pdb; pdb.set_trace()
pred_ctr_y = dy * heights + ctr_y
pred_w = torch.exp(dw) * widths
pred_h = torch.exp(dh) * heights
Expand All @@ -194,5 +192,4 @@ def decode_boxes(rel_codes, boxes, weights):
],
dim=2,
)
#import pdb; pdb.set_trace()
return pred_boxes
2 changes: 0 additions & 2 deletions neural_coder/coders/tensorflow/amp.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,6 @@ def __init__(self, file) -> None:
self.keras_edited_flag = False

def transform(self):
# import pdb
# pdb.set_trace()
lines = self.file.split("\n")
for line in lines:
if self.is_modify(line):
Expand Down
2 changes: 0 additions & 2 deletions neural_coder/coders/tensorflow/inc.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,6 @@ def __init__(self, file) -> None:
self.result = []

def transform(self):
# import pdb
# pdb.set_trace()
lines = self.file.split("\n")
for line in lines:
if self.is_modify(line):
Expand Down
1 change: 0 additions & 1 deletion neural_compressor/strategy/strategy.py
Original file line number Diff line number Diff line change
Expand Up @@ -485,7 +485,6 @@ def traverse(self):
return self.distributed_traverse()
self._setup_pre_tuning_algo_scheduler()
self._prepare_tuning()
# import pdb;pdb.set_trace()
traverse_start_time = time()
for op_tuning_cfg in self.next_tune_cfg():
tuning_start_time = time()
Expand Down
1 change: 0 additions & 1 deletion neural_compressor/torch/algorithms/habana_fp8/fp8_quant.py
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,6 @@ def input_observer_forward_pre_hook(self, input):

### Insert input observer into model, only for fp8_e4m3 static quantization ###
observer_cls = observer_mapping[act_observer]
# import pdb;pdb.set_trace()

if isinstance(module, white_list):
observer_obj = observer_cls(dtype=dtype_mapping[qconfig.act_dtype])
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@ def forward(self, x):

class TestPruning(unittest.TestCase):
def test_pruning_basic(self):
# import pdb;pdb.set_trace()
hidden_size = 32
model = NaiveMLP(hidden_size)
# import classifier searching functions
Expand Down
1 change: 0 additions & 1 deletion test/pruning_with_pt/pruning_2.x/test_auto_slim.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,6 @@ def test_pruning_basic(self):
# run mha and ffn pruning
compression_manager = prepare_compression(model=model, confs=configs)
compression_manager.callbacks.on_train_begin()
# import pdb;pdb.set_trace()
for epoch in range(3):
model.train()
compression_manager.callbacks.on_epoch_begin(epoch)
Expand Down
Loading