Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add PT2E cv&llm example #1853

Merged
merged 17 commits into from
Jun 14, 2024
Merged
6 changes: 5 additions & 1 deletion docs/3x/PT_StaticQuant.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
PyTorch Static Quantization
========================================

1. [Introduction](#introduction)
2. [Get Started](#get-started) \
2.1 [Static Quantization with IPEX Backend](#static-quantization-with-ipex-backend) \
Expand All @@ -9,6 +8,7 @@ PyTorch Static Quantization
2.1.3 [Model Examples](#model-examples) \
2.2 [Static Quantization with PT2E Backend](#static-quantization-with-pt2e-backend) \
2.2.1 [Usage Sample with PT2E](#usage-sample-with-pt2e)
2.2.2 [Model Examples with PT2E](#model-examples-with-pt2e)


## Introduction
Expand Down Expand Up @@ -102,3 +102,7 @@ opt_model = torch.compile(q_model)
```

> Note: The `set_local` of `StaticQuantConfig` will be supported after the torch 2.4 release.

#### Model Examples with PT2E

Users could refer to [cv examples](https://github.com/intel/neural-compressor/blob/master/examples/3.x_api/pytorch/cv/static_quant) and [llm examples](https://github.com/intel/neural-compressor/blob/master/examples/3.x_api/pytorch/nlp/huggingface_models/language-modeling/quantization/static_quant/pt2e) on how to quantize a new model.
120 changes: 67 additions & 53 deletions examples/.config/model_params_pytorch_3x.json
Original file line number Diff line number Diff line change
@@ -1,53 +1,67 @@
{
"pytorch": {
"gpt_j_ipex":{
"model_src_dir": "nlp/huggingface_models/language-modeling/quantization/static_quant",
"dataset_location": "",
"input_model": "",
"main_script": "run_clm_no_trainer.py",
"batch_size": 1
},
"gpt_j_ipex_sq":{
"model_src_dir": "nlp/huggingface_models/language-modeling/quantization/smooth_quant",
"dataset_location": "",
"input_model": "",
"main_script": "run_clm_no_trainer.py",
"batch_size": 1
},
"llama2_7b_ipex":{
"model_src_dir": "nlp/huggingface_models/language-modeling/quantization/static_quant",
"dataset_location": "",
"input_model": "",
"main_script": "run_clm_no_trainer.py",
"batch_size": 1
},
"llama2_7b_ipex_sq":{
"model_src_dir": "nlp/huggingface_models/language-modeling/quantization/smooth_quant",
"dataset_location": "",
"input_model": "",
"main_script": "run_clm_no_trainer.py",
"batch_size": 1
},
"opt_125m_ipex":{
"model_src_dir": "nlp/huggingface_models/language-modeling/quantization/static_quant",
"dataset_location": "",
"input_model": "",
"main_script": "run_clm_no_trainer.py",
"batch_size": 8
},
"opt_125m_ipex_sq":{
"model_src_dir": "nlp/huggingface_models/language-modeling/quantization/smooth_quant",
"dataset_location": "",
"input_model": "",
"main_script": "run_clm_no_trainer.py",
"batch_size": 8
},
"dlrm_ipex": {
"model_src_dir": "recommendation/dlrm/static_quant/ipex",
"dataset_location": "/mnt/local_disk3/dataset/dlrm/dlrm/input",
"input_model": "/mnt/local_disk3/dataset/dlrm/dlrm/dlrm_weight/tb00_40M.pt",
"main_script": "dlrm_s_pytorch.py",
"batch_size": 16384
}
}
}
{
"pytorch": {
"gpt_j_ipex":{
"model_src_dir": "nlp/huggingface_models/language-modeling/quantization/static_quant",
"dataset_location": "",
"input_model": "",
"main_script": "run_clm_no_trainer.py",
"batch_size": 1
},
"gpt_j_ipex_sq":{
"model_src_dir": "nlp/huggingface_models/language-modeling/quantization/smooth_quant",
"dataset_location": "",
"input_model": "",
"main_script": "run_clm_no_trainer.py",
"batch_size": 1
},
"llama2_7b_ipex":{
"model_src_dir": "nlp/huggingface_models/language-modeling/quantization/static_quant",
"dataset_location": "",
"input_model": "",
"main_script": "run_clm_no_trainer.py",
"batch_size": 1
},
"llama2_7b_ipex_sq":{
"model_src_dir": "nlp/huggingface_models/language-modeling/quantization/smooth_quant",
"dataset_location": "",
"input_model": "",
"main_script": "run_clm_no_trainer.py",
"batch_size": 1
},
"opt_125m_ipex":{
"model_src_dir": "nlp/huggingface_models/language-modeling/quantization/static_quant",
"dataset_location": "",
"input_model": "",
"main_script": "run_clm_no_trainer.py",
"batch_size": 8
},
"opt_125m_ipex_sq":{
"model_src_dir": "nlp/huggingface_models/language-modeling/quantization/smooth_quant",
"dataset_location": "",
"input_model": "",
"main_script": "run_clm_no_trainer.py",
"batch_size": 8
},
"dlrm_ipex": {
"model_src_dir": "recommendation/dlrm/static_quant/ipex",
"dataset_location": "/mnt/local_disk3/dataset/dlrm/dlrm/input",
"input_model": "/mnt/local_disk3/dataset/dlrm/dlrm/dlrm_weight/tb00_40M.pt",
"main_script": "dlrm_s_pytorch.py",
"batch_size": 16384
},
"resnet18_pt2e_static":{
"model_src_dir": "cv/static_quant",
"dataset_location": "/tf_dataset/pytorch/ImageNet/raw",
"input_model": "",
"main_script": "main.py",
"batch_size": 1
},
"opt_125m_pt2e_static":{
"model_src_dir": "nlp/huggingface_models/language-modeling/quantization/static_quant/pt2e",
"dataset_location": "",
"input_model": "",
"main_script": "run_clm_no_trainer.py",
"batch_size": 1
}
}
}
27 changes: 27 additions & 0 deletions examples/3.x_api/pytorch/cv/static_quant/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# ImageNet Quantization

This implements quantization of popular model architectures, such as ResNet on the ImageNet dataset.

## Requirements

- Install requirements
- `pip install -r requirements.txt`
- Download the ImageNet dataset from http://www.image-net.org/
- Then, move and extract the training and validation images to labeled subfolders, using [the following shell script](extract_ILSVRC.sh)

## Quantizaiton

To quant a model and validate accaracy, run `main.py` with the desired model architecture and the path to the ImageNet dataset:

```bash
python main.py -a resnet18 [imagenet-folder with train and val folders] -q -e
```


## Use Dummy Data

ImageNet dataset is large and time-consuming to download. To get started quickly, run `main.py` using dummy data by "--dummy". Note that the loss or accuracy is useless in this case.

```bash
python main.py -a resnet18 --dummy -q -e
```
80 changes: 80 additions & 0 deletions examples/3.x_api/pytorch/cv/static_quant/extract_ILSVRC.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
#!/bin/bash
#
# script to extract ImageNet dataset
# ILSVRC2012_img_train.tar (about 138 GB)
# ILSVRC2012_img_val.tar (about 6.3 GB)
# make sure ILSVRC2012_img_train.tar & ILSVRC2012_img_val.tar in your current directory
#
# Adapted from:
# https://github.com/facebook/fb.resnet.torch/blob/master/INSTALL.md
# https://gist.github.com/BIGBALLON/8a71d225eff18d88e469e6ea9b39cef4
#
# imagenet/train/
# ├── n01440764
# │ ├── n01440764_10026.JPEG
# │ ├── n01440764_10027.JPEG
# │ ├── ......
# ├── ......
# imagenet/val/
# ├── n01440764
# │ ├── ILSVRC2012_val_00000293.JPEG
# │ ├── ILSVRC2012_val_00002138.JPEG
# │ ├── ......
# ├── ......
#
#
# Make imagnet directory
#
mkdir imagenet
#
# Extract the training data:
#
# Create train directory; move .tar file; change directory
mkdir imagenet/train && mv ILSVRC2012_img_train.tar imagenet/train/ && cd imagenet/train
# Extract training set; remove compressed file
tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
#
# At this stage imagenet/train will contain 1000 compressed .tar files, one for each category
#
# For each .tar file:
# 1. create directory with same name as .tar file
# 2. extract and copy contents of .tar file into directory
# 3. remove .tar file
find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
#
# This results in a training directory like so:
#
# imagenet/train/
# ├── n01440764
# │ ├── n01440764_10026.JPEG
# │ ├── n01440764_10027.JPEG
# │ ├── ......
# ├── ......
#
# Change back to original directory
cd ../..
#
# Extract the validation data and move images to subfolders:
#
# Create validation directory; move .tar file; change directory; extract validation .tar; remove compressed file
mkdir imagenet/val && mv ILSVRC2012_img_val.tar imagenet/val/ && cd imagenet/val && tar -xvf ILSVRC2012_img_val.tar && rm -f ILSVRC2012_img_val.tar
# get script from soumith and run; this script creates all class directories and moves images into corresponding directories
wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash
#
# This results in a validation directory like so:
#
# imagenet/val/
# ├── n01440764
# │ ├── ILSVRC2012_val_00000293.JPEG
# │ ├── ILSVRC2012_val_00002138.JPEG
# │ ├── ......
# ├── ......
#
#
# Check total files after extract
#
# $ find train/ -name "*.JPEG" | wc -l
# 1281167
# $ find val/ -name "*.JPEG" | wc -l
# 50000
#
Loading
Loading