Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add TF 3x Examples #1839

Merged
merged 14 commits into from
Jun 14, 2024
48 changes: 48 additions & 0 deletions examples/.config/model_params_tensorflow_3x.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
{
"tensorflow": {
"bert_large_squad_model_zoo": {
"model_src_dir": "nlp/bert_large_squad_model_zoo/quantization/ptq",
"dataset_location": "/tf_dataset/tensorflow/bert/data",
"input_model": "/tf_dataset/tensorflow/bert/fp32_bert_squad.pb",
"main_script": "main.py",
"batch_size": 64,
"fp32_model_url": "https://storage.googleapis.com/intel-optimized-tensorflow/models/v2_7_0/fp32_bert_squad.pb"
},
"opt_125m_sq": {
"model_src_dir": "nlp/large_language_models/quantization/ptq/smoothquant",
"dataset_location": "",
"input_model": "facebook/opt-125m",
"main_script": "main.py",
"batch_size": 16
},
"gpt2_medium_sq": {
"model_src_dir": "nlp/large_language_models/quantization/ptq/smoothquant",
"dataset_location": "",
"input_model": "gpt2-medium",
"main_script": "main.py",
"batch_size": 16
},
"gpt-j-6B": {
"model_src_dir": "nlp/large_language_models/quantization/ptq/gpt-j",
"dataset_location": "",
"input_model": "/tf_dataset2/models/tensorflow/gpt-j-6B",
"main_script": "main.py",
"batch_size": 1
},
"ViT": {
"model_src_dir": "image_recognition/vision_transformer/quantization/ptq",
"dataset_location": "/tf_dataset/dataset/imagenet",
"input_model": "/tf_dataset/tensorflow/vit/HF-ViT-Base16-Img224-frozen.pb",
"main_script": "main.py",
"batch_size": 32
},
"GraphSage": {
"model_src_dir": "graph_networks/graphsage/quantization/ptq",
"dataset_location": "/tf_dataset/dataset/ppi",
"input_model": "/tf_dataset/tensorflow/graphsage/graphsage_frozen_model.pb",
"main_script": "main.py",
"batch_size": 1000
}
}
}

Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
Step-by-Step
============

This document is used to list steps of reproducing TensorFlow Object Detection models tuning results. This example can run on Intel CPUs and GPUs.

# Prerequisite


## 1. Environment
Recommend python 3.6 or higher version.

### Install Intel® Neural Compressor
```shell
pip install neural-compressor
```

### Install Intel Tensorflow
```shell
pip install intel-tensorflow
```
> Note: Validated TensorFlow [Version](/docs/source/installation_guide.md#validated-software-environment).

### Installation Dependency packages
```shell
cd examples\tensorflow\graph_networks\graphsage\quantization\ptq
pip install -r requirements.txt
```

### Install Intel Extension for Tensorflow

#### Quantizing the model on Intel GPU(Mandatory to install ITEX)
Intel Extension for Tensorflow is mandatory to be installed for quantizing the model on Intel GPUs.

```shell
pip install --upgrade intel-extension-for-tensorflow[xpu]
```
For any more details, please follow the procedure in [install-gpu-drivers](https://github.com/intel/intel-extension-for-tensorflow/blob/main/docs/install/install_for_xpu.md#install-gpu-drivers)

#### Quantizing the model on Intel CPU(Optional to install ITEX)
Intel Extension for Tensorflow for Intel CPUs is experimental currently. It's not mandatory for quantizing the model on Intel CPUs.

```shell
pip install --upgrade intel-extension-for-tensorflow[cpu]
```

> **Note**:
> The version compatibility of stock Tensorflow and ITEX can be checked [here](https://github.com/intel/intel-extension-for-tensorflow#compatibility-table). Please make sure you have installed compatible Tensorflow and ITEX.

## 2. Prepare Model
Download Frozen graph:
```shell
wget https://storage.googleapis.com/intel-optimized-tensorflow/models/2_12_0/graphsage_frozen_model.pb
```

## 3. Prepare Dataset

```shell
wget https://snap.stanford.edu/graphsage/ppi.zip
unzip ppi.zip
```

# Run

## 1. Quantization

```shell
# The cmd of running faster_rcnn_resnet50
bash run_quant.sh --input_model=./graphsage_frozen_model.pb --output_model=./nc_graphsage_int8_model.pb --dataset_location=./ppi
```

## 2. Benchmark
```shell
bash run_benchmark.sh --input_model=./nc_graphsage_int8_model.pb --dataset_location=./ppi --mode=performance
```

Details of enabling Intel® Neural Compressor on graphsage for Tensorflow.
=========================

This is a tutorial of how to enable graphsage model with Intel® Neural Compressor.
## User Code Analysis
User specifies fp32 *model*, calibration dataset *calib_dataloader* and a custom *eval_func* which encapsulates the evaluation dataset and metric by itself.

For graphsage, we applied the latter one because our philosophy is to enable the model with minimal changes. Hence we need to make two changes on the original code. The first one is to implement the q_dataloader and make necessary changes to *eval_func*.

### Code update

After prepare step is done, we just need update main.py like below.
```python
if args.tune:
from neural_compressor.tensorflow import StaticQuantConfig, quantize_model
from neural_compressor.tensorflow.utils import BaseDataLoader

dataset = CustomDataset()
calib_dataloader = BaseDataLoader(dataset=dataset, batch_size=1, collate_fn=collate_function)
quant_config = StaticQuantConfig()
q_model = quantize_model(args.input_graph, quant_config, calib_dataloader)
q_model.save(args.output_graph)

if args.benchmark:
if args.mode == 'performance':
evaluate(args.input_graph)
elif args.mode == 'accuracy':
acc_result = evaluate(args.input_graph)
print("Batch size = %d" % args.batch_size)
print("Accuracy: %.5f" % acc_result)

```

The quantization.fit() function will return a best quantized model during timeout constrain.
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
#
# -*- coding: utf-8 -*-
#
# Copyright (c) 2024 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import numpy as np
import random
import json
import sys
import os

import networkx as nx
from networkx.readwrite import json_graph


def load_data(prefix, normalize=True, load_walks=False):
G_data = json.load(open(prefix + "-G.json"))
G = json_graph.node_link_graph(G_data)
if isinstance(list(G.nodes())[0], int):
conversion = lambda n : int(n)
else:
conversion = lambda n : n

if os.path.exists(prefix + "-feats.npy"):
feats = np.load(prefix + "-feats.npy")
else:
print("No features present.. Only identity features will be used.")
feats = None
id_map = json.load(open(prefix + "-id_map.json"))
id_map = {conversion(k):int(v) for k,v in id_map.items()}
walks = []
class_map = json.load(open(prefix + "-class_map.json"))
if isinstance(list(class_map.values())[0], list):
lab_conversion = lambda n : n
else:
lab_conversion = lambda n : int(n)

class_map = {conversion(k):lab_conversion(v) for k,v in class_map.items()}

## Remove all nodes that do not have val/test annotations
## (necessary because of networkx weirdness with the Reddit data)
broken_count = 0
for node in G.nodes():
if not 'val' in G.nodes[node] or not 'test' in G.nodes[node]:
G.remove_node(node)
broken_count += 1
print("Removed {:d} nodes that lacked proper annotations due to networkx versioning issues".format(broken_count))

## Make sure the graph has edge train_removed annotations
## (some datasets might already have this..)
print("Loaded data.. now preprocessing..")
for edge in G.edges():
if (G.nodes[edge[0]]['val'] or G.nodes[edge[1]]['val'] or
G.nodes[edge[0]]['test'] or G.nodes[edge[1]]['test']):
G[edge[0]][edge[1]]['train_removed'] = True
else:
G[edge[0]][edge[1]]['train_removed'] = False

if normalize and not feats is None:
from sklearn.preprocessing import StandardScaler
train_ids = np.array([id_map[n] for n in G.nodes() if not G.nodes[n]['val'] and not G.nodes[n]['test']])
train_feats = feats[train_ids]
scaler = StandardScaler()
scaler.fit(train_feats)
feats = scaler.transform(feats)

return G, feats, id_map, walks, class_map
Loading
Loading