Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Skip the verified config #1775

Merged
merged 4 commits into from
May 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions neural_compressor/common/base_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -436,6 +436,13 @@ def _is_op_type(name: str) -> bool:
def get_config_set_for_tuning(cls):
raise NotImplementedError

def __eq__(self, other: BaseConfig) -> bool:
if not isinstance(other, type(self)):
return False
return self.params_list == other.params_list and all(
getattr(self, str(attr)) == getattr(other, str(attr)) for attr in self.params_list
)


class ComposableConfig(BaseConfig):
name = COMPOSABLE_CONFIG
Expand Down
20 changes: 18 additions & 2 deletions neural_compressor/common/base_tuning.py
Original file line number Diff line number Diff line change
Expand Up @@ -231,13 +231,29 @@ def __len__(self) -> int:


class ConfigLoader:
def __init__(self, config_set: ConfigSet, sampler: Sampler = default_sampler) -> None:
def __init__(
self, config_set: ConfigSet, sampler: Sampler = default_sampler, skip_verified_config: bool = True
) -> None:
self.config_set = ConfigSet.from_fwk_configs(config_set)
self._sampler = sampler(self.config_set)
self.skip_verified_config = skip_verified_config
self.verify_config_list = list()

def is_verified_config(self, config):
for verified_config in self.verify_config_list:
if config == verified_config:
return True
return False

def __iter__(self) -> Generator[BaseConfig, Any, None]:
for index in self._sampler:
yield self.config_set[index]
new_config = self.config_set[index]
if self.skip_verified_config and self.is_verified_config(new_config):
logger.warning("Skip the verified config:")
logger.warning(new_config.to_dict())
continue
self.verify_config_list.append(new_config)
yield new_config


class TuningConfig:
Expand Down
3 changes: 3 additions & 0 deletions neural_compressor/common/tuning_param.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,3 +98,6 @@ def is_tunable(self, value: Any) -> bool:
except Exception as e:
logger.debug(f"Failed to validate the input_args: {e}")
return False

def __str__(self) -> str:
return self.name
6 changes: 3 additions & 3 deletions neural_compressor/torch/quantization/algorithm_entry.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def rtn_entry(
configs_mapping: Dict[Tuple[str, callable], RTNConfig],
mode: Mode = Mode.QUANTIZE,
*args,
**kwargs
**kwargs,
) -> torch.nn.Module:
"""The main entry to apply rtn quantization."""
from neural_compressor.torch.algorithms.weight_only.rtn import RTNQuantizer
Expand Down Expand Up @@ -258,7 +258,7 @@ def awq_quantize_entry(
configs_mapping: Dict[Tuple[str, callable], AWQConfig],
mode: Mode = Mode.QUANTIZE,
*args,
**kwargs
**kwargs,
) -> torch.nn.Module:
logger.info("Quantize model with the AWQ algorithm.")
from neural_compressor.torch.algorithms.weight_only.awq import AWQQuantizer
Expand Down Expand Up @@ -455,7 +455,7 @@ def hqq_entry(
configs_mapping: Dict[Tuple[str, Callable], HQQConfig],
mode: Mode = Mode.QUANTIZE,
*args,
**kwargs
**kwargs,
) -> torch.nn.Module:
from neural_compressor.torch.algorithms.weight_only.hqq import HQQuantizer

Expand Down
8 changes: 8 additions & 0 deletions test/3x/common/test_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -336,6 +336,14 @@ def test_config_loader(self) -> None:
for i, config in enumerate(self.loader):
self.assertEqual(config, self.config_set[i])

def test_config_loader_skip_verified_config(self) -> None:
config_set = [FakeAlgoConfig(weight_bits=[4, 8]), FakeAlgoConfig(weight_bits=8)]
config_loader = ConfigLoader(config_set)
config_count = 0
for i, config in enumerate(config_loader):
config_count += 1
self.assertEqual(config_count, 2)


if __name__ == "__main__":
unittest.main()
7 changes: 2 additions & 5 deletions test/3x/torch/quantization/weight_only/test_mixed_algos.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,8 @@


def run_fn(model):
# GPTQ uses ValueError to reduce computation when collecting input data of the first block
# It's special for UTs, no need to add this wrapper in examples.
with pytest.raises(ValueError):
Copy link
Contributor Author

@yiliu30 yiliu30 May 8, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@XuehaoSun RTN won't raise ValueError

model(torch.tensor([[10, 20, 30]], dtype=torch.long))
model(torch.tensor([[40, 50, 60]], dtype=torch.long))
model(torch.tensor([[10, 20, 30]], dtype=torch.long))
model(torch.tensor([[40, 50, 60]], dtype=torch.long))


class TestMixedTwoAlgo:
Expand Down
Loading