Skip to content

Commit

Permalink
Add keras saved_model examples (#1201)
Browse files Browse the repository at this point in the history
  • Loading branch information
zehao-intel authored Sep 23, 2022
1 parent e81b265 commit fdd40e1
Show file tree
Hide file tree
Showing 45 changed files with 2,288 additions and 3 deletions.
63 changes: 63 additions & 0 deletions examples/.config/model_params_tensorflow.json
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,15 @@
"batch_size": 100,
"new_benchmark": true
},
"resnet101_keras": {
"model_src_dir": "image_recognition/keras_models/resnet101/quantization/ptq",
"dataset_location": "/tf_dataset/dataset/imagenet",
"input_model": "/tf_dataset2/models/tensorflow/resnet101_keras/saved_model/",
"yaml": "resnet101.yaml",
"strategy": "basic",
"batch_size": 1,
"new_benchmark": true
},
"resnet_v1_50_slim": {
"model_src_dir": "image_recognition/tensorflow_models/quantization/ptq/slim",
"dataset_location": "/tf_dataset/dataset/imagenet",
Expand Down Expand Up @@ -108,6 +117,15 @@
"batch_size": 100,
"new_benchmark": true
},
"inception_v3_keras": {
"model_src_dir": "image_recognition/keras_models/inception_v3/quantization/ptq",
"dataset_location": "/tf_dataset/dataset/imagenet",
"input_model": "/tf_dataset2/models/tensorflow/inception_v3_keras/saved_model/",
"yaml": "inception_v3.yaml",
"strategy": "basic",
"batch_size": 1,
"new_benchmark": true
},
"inception_v3_slim": {
"model_src_dir": "image_recognition/tensorflow_models/quantization/ptq/slim",
"dataset_location": "/tf_dataset/dataset/imagenet",
Expand Down Expand Up @@ -144,6 +162,15 @@
"batch_size": 100,
"new_benchmark": true
},
"inception_resnet_v2_keras": {
"model_src_dir": "image_recognition/keras_models/inception_resnet_v2/quantization/ptq",
"dataset_location": "/tf_dataset/dataset/imagenet",
"input_model": "/tf_dataset2/models/tensorflow/inception_resnet_v2_keras/saved_model/",
"yaml": "inception_resnet_v2.yaml",
"strategy": "basic",
"batch_size": 1,
"new_benchmark": true
},
"vgg16": {
"model_src_dir": "image_recognition/tensorflow_models/quantization/ptq",
"dataset_location": "/tf_dataset/dataset/imagenet",
Expand Down Expand Up @@ -261,6 +288,15 @@
"batch_size": 100,
"new_benchmark": true
},
"resnetv2_50_keras": {
"model_src_dir": "image_recognition/keras_models/resnetv2_50/quantization/ptq",
"dataset_location": "/tf_dataset/dataset/imagenet",
"input_model": "/tf_dataset2/models/tensorflow/resnetv2_50_keras/saved_model",
"yaml": "resnetv2_50.yaml",
"strategy": "basic",
"batch_size": 1,
"new_benchmark": true
},
"resnetv2_101": {
"model_src_dir": "image_recognition/tensorflow_models/quantization/ptq",
"dataset_location": "/tf_dataset/dataset/imagenet",
Expand All @@ -279,6 +315,15 @@
"batch_size": 100,
"new_benchmark": true
},
"resnetv2_101_keras": {
"model_src_dir": "image_recognition/keras_models/resnetv2_101/quantization/ptq",
"dataset_location": "/tf_dataset/dataset/imagenet",
"input_model": "/tf_dataset2/models/tensorflow/resnetv2_101_keras/saved_model",
"yaml": "resnetv2_101.yaml",
"strategy": "basic",
"batch_size": 1,
"new_benchmark": true
},
"resnetv2_152": {
"model_src_dir": "image_recognition/tensorflow_models/quantization/ptq",
"dataset_location": "/tf_dataset/dataset/imagenet",
Expand Down Expand Up @@ -315,6 +360,15 @@
"batch_size": 100,
"new_benchmark": true
},
"mobilenetv2_keras": {
"model_src_dir": "image_recognition/keras_models/mobilenet_v2/quantization/ptq",
"dataset_location": "/tf_dataset/dataset/imagenet",
"input_model": "/tf_dataset2/models/tensorflow/mobilenet_v2_keras/saved_model/",
"yaml": "mobilenet_v2.yaml",
"strategy": "basic",
"batch_size": 1,
"new_benchmark": true
},
"mobilenetv3": {
"model_src_dir": "image_recognition/tensorflow_models/quantization/ptq",
"dataset_location": "/tf_dataset/dataset/imagenet",
Expand Down Expand Up @@ -2412,6 +2466,15 @@
"strategy": "basic",
"batch_size": 64,
"new_benchmark": false
},
"xception": {
"model_src_dir": "image_recognition/keras_models/xception/quantization/ptq",
"dataset_location": "/tf_dataset/dataset/imagenet",
"input_model": "/tf_dataset2/models/tensorflow/xception_keras/saved_model/",
"yaml": "xception.yaml",
"strategy": "basic",
"batch_size": 1,
"new_benchmark": true
}
}
}
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
Step-by-Step
============

This document is used to enable Tensorflow Keras models using Intel® Neural Compressor.


## Prerequisite

### 1. Installation
```shell
# Install Intel® Neural Compressor
pip install neural-compressor
```
### 2. Install Intel Tensorflow
```shell
pip install intel-tensorflow
```
> Note: Supported Tensorflow [Version](../../../../../../../README.md).
### 3. Prepare Pretrained model

The pretrained model is provided by [Keras Applications](https://keras.io/api/applications/). prepare the model, Run as follow:
```
python prepare_model.py --output_model=/path/to/model
```
`--output_model ` the model should be saved as SavedModel format or H5 format.

## Run Command
```shell
bash run_tuning.sh --config=inception_resnet_v2.yaml --input_model=./path/to/model --output_model=./result --eval_data=/path/to/evaluation/dataset --calib_data=/path/to/calibration/dataset
bash run_benchmark.sh --config=inception_resnet_v2.yaml --input_model=./path/to/model --mode=performance --eval_data=/path/to/evaluation/dataset
```

Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
#
# Copyright (c) 2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

version: 1.0

model: # mandatory. used to specify model specific information.
name: inception_resnet_v2
framework: tensorflow # mandatory. supported values are tensorflow, pytorch, pytorch_ipex, onnxrt_integer, onnxrt_qlinear or mxnet; allow new framework backend extension.

quantization: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
calibration:
sampling_size: 50, 100 # optional. default value is 100. used to set how many samples should be used in calibration.
model_wise: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
activation:
algorithm: minmax

evaluation: # optional. required if user doesn't provide eval_func in neural_compressor.Quantization.
accuracy:
performance: # optional. used to benchmark performance of passing model.
iteration: 100
configs:
cores_per_instance: 4
num_of_instance: 7

tuning:
accuracy_criterion:
relative: 0.01 # optional. default value is relative, other value is absolute. this example allows relative accuracy loss: 1%.
exit_policy:
timeout: 0 # optional. tuning timeout (seconds). default value is 0 which means early stop. combine with max_trials field to decide when to exit.
random_seed: 9527 # optional. random seed for deterministic tuning.
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
#
# -*- coding: utf-8 -*-
#
# Copyright (c) 2018 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import time
import shutil
import numpy as np
from argparse import ArgumentParser
from neural_compressor import data
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)

flags = tf.compat.v1.flags
FLAGS = flags.FLAGS

## Required parameters
flags.DEFINE_string(
'input_model', None, 'Run inference with specified pb graph.')

flags.DEFINE_string(
'output_model', None, 'The output model of the quantized model.')

flags.DEFINE_string(
'mode', 'performance', 'define benchmark mode for accuracy or performance')

flags.DEFINE_bool(
'tune', False, 'whether to tune the model')

flags.DEFINE_bool(
'benchmark', False, 'whether to benchmark the model')

flags.DEFINE_string(
'config', 'bert.yaml', 'yaml configuration of the model')

flags.DEFINE_string(
'calib_data', None, 'location of calibration dataset')

flags.DEFINE_string(
'eval_data', None, 'location of evaluate dataset')

from neural_compressor.experimental.metric.metric import TensorflowTopK
from neural_compressor.experimental.data.transforms.transform import ComposeTransform
from neural_compressor.experimental.data.datasets.dataset import TensorflowImageRecord
from neural_compressor.experimental.data.transforms.imagenet_transform import LabelShift
from neural_compressor.experimental.data.dataloaders.default_dataloader import DefaultDataLoader
from neural_compressor.data.transforms.imagenet_transform import BilinearImagenetTransform

eval_dataset = TensorflowImageRecord(root=FLAGS.eval_data, transform=ComposeTransform(transform_list= \
[BilinearImagenetTransform(height=299, width=299)]))
if FLAGS.benchmark and FLAGS.mode == 'performance':
eval_dataloader = DefaultDataLoader(dataset=eval_dataset, batch_size=1)
else:
eval_dataloader = DefaultDataLoader(dataset=eval_dataset, batch_size=32)
if FLAGS.calib_data:
calib_dataset = TensorflowImageRecord(root=FLAGS.calib_data, transform=ComposeTransform(transform_list= \
[BilinearImagenetTransform(height=299, width=299)]))
calib_dataloader = DefaultDataLoader(dataset=calib_dataset, batch_size=10)

def evaluate(model, measurer=None):
"""
Custom Evaluate function to inference the model for specified metric on validation dataset.
Args:
model ([tf.saved_model.load]): The model will be the class of tf.saved_model.load(quantized_model_path).
measurer (object, optional): for precise benchmark measurement.
Returns:
[float]: evaluation result, the larger is better.
"""
infer = model.signatures["serving_default"]
output_dict_keys = infer.structured_outputs.keys()
output_name = list(output_dict_keys )[0]
postprocess = LabelShift(label_shift=1)
metric = TensorflowTopK(k=1)

def eval_func(dataloader, metric):
results = []
for idx, (inputs, labels) in enumerate(dataloader):
inputs = np.array(inputs)
input_tensor = tf.constant(inputs)
if measurer:
measurer.start()
predictions = infer(input_tensor)[output_name]
if measurer:
measurer.end()
predictions = predictions.numpy()
predictions, labels = postprocess((predictions, labels))
metric.update(predictions, labels)
return results

results = eval_func(eval_dataloader, metric)
acc = metric.result()
return acc

def main(_):
if FLAGS.tune:
from neural_compressor.experimental import Quantization, common
quantizer = Quantization(FLAGS.config)
quantizer.model = common.Model(FLAGS.input_model)
quantizer.eval_func = evaluate
quantizer.calib_dataloader = calib_dataloader
q_model = quantizer.fit()
q_model.save(FLAGS.output_model)


if FLAGS.benchmark:
from neural_compressor.experimental import Benchmark, common
evaluator = Benchmark(FLAGS.config)
evaluator.model = common.Model(FLAGS.input_model)
evaluator.b_func = evaluate
evaluator.b_dataloader = eval_dataloader
evaluator(FLAGS.mode)

if __name__ == "__main__":
tf.compat.v1.app.run()
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
import argparse
import tensorflow as tf
def get_inception_resnet_v2_model(saved_path):
model = tf.keras.applications.InceptionResNetV2(weights='imagenet')
model.save(saved_path)

if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Export pretained keras model',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--output_model',
type=str,
help='path to exported model file')

args = parser.parse_args()
get_inception_resnet_v2_model(args.output_model)
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
#!/bin/bash
set -x

function main {

init_params "$@"
run_benchmark

}

# init params
function init_params {
for var in "$@"
do
case $var in
--config=*)
config=$(echo $var |cut -f2 -d=)
;;
--input_model=*)
input_model=$(echo $var |cut -f2 -d=)
;;
--mode=*)
mode=$(echo $var |cut -f2 -d=)
;;
--eval_data=*)
eval_data=$(echo $var |cut -f2 -d=)
;;
esac
done

}

# run_tuning
function run_benchmark {

python main.py \
--input_model ${input_model} \
--config ${config} \
--benchmark \
--mode ${mode} \
--eval_data ${eval_data}
}

main "$@"
Loading

0 comments on commit fdd40e1

Please sign in to comment.