Skip to content

Commit

Permalink
Add clip for onnxrt smoothquant (#1432)
Browse files Browse the repository at this point in the history
  • Loading branch information
mengniwang95 authored Dec 1, 2023
1 parent 76b8b3f commit cbb69bf
Show file tree
Hide file tree
Showing 2 changed files with 37 additions and 0 deletions.
1 change: 1 addition & 0 deletions neural_compressor/adaptor/ox_utils/smooth_quant.py
Original file line number Diff line number Diff line change
Expand Up @@ -615,6 +615,7 @@ def _get_smooth_scale(self, weights, specific_alpha, tensor):
weights_max = np.amax(weights, axis=-1)
input_power = np.power(self.max_vals_per_channel[tensor], specific_alpha)
weight_power = np.power(weights_max, 1 - specific_alpha)
weight_power = np.clip(weight_power, a_min=1e-5, a_max=None)
scale = np.clip(input_power / weight_power, a_min=1e-5, a_max=None)
return scale

Expand Down
36 changes: 36 additions & 0 deletions test/algorithm/test_smooth_quant_onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,10 +89,42 @@ def build_onnx_model():
return model


def build_onnx_model_with_zero_weight():
A = helper.make_tensor_value_info("A", TensorProto.FLOAT, [1, 5, 5])
C = helper.make_tensor_value_info("C", TensorProto.FLOAT, [1, 5, 2])
H = helper.make_tensor_value_info("H", TensorProto.FLOAT, [1, 5, 2])

g_value = np.zeros(25).astype(np.float32)
G_init = helper.make_tensor("G", TensorProto.FLOAT, [5, 5], g_value.reshape(25).tolist())
matmul_node = onnx.helper.make_node("MatMul", ["A", "G"], ["C"], name="Matmul")

b_value = np.zeros(10).astype(np.float32)
B_init = helper.make_tensor("B", TensorProto.FLOAT, [5, 2], b_value.reshape(10).tolist())
matmul_node2 = onnx.helper.make_node("MatMul", ["C", "B"], ["I"], name="Matmul2")

e_value = np.zeros(10).astype(np.float32)
E_init = helper.make_tensor("E", TensorProto.FLOAT, [5, 2], e_value.reshape(10).tolist())
matmul_node3 = onnx.helper.make_node("MatMul", ["C", "E"], ["K"], name="Matmul3")

add = onnx.helper.make_node("Add", ["I", "E"], ["D"], name="add")

f_value = np.zeros(10).astype(np.float32)
F_init = helper.make_tensor("F", TensorProto.FLOAT, [5, 2], f_value.reshape(10).tolist())
add2 = onnx.helper.make_node("Add", ["D", "F"], ["H"], name="add2")

graph = helper.make_graph(
[matmul_node, matmul_node2, matmul_node3, add, add2], "test_graph_1", [A], [H], [B_init, E_init, F_init, G_init]
)
model = helper.make_model(graph)
model = helper.make_model(graph, **{"opset_imports": [helper.make_opsetid("", 13)]})
return model


class TestORTSq(unittest.TestCase):
@classmethod
def setUpClass(self):
self.model = build_onnx_model()
self.zero_model = build_onnx_model_with_zero_weight()
dataset = Datasets("onnxrt_qdq")["dummy_v2"]((5, 5), (5, 1))
self.dataloader = DATALOADERS["onnxrt_qlinearops"](dataset)
fixed_dataset = Datasets("onnxrt_qdq")["dummy"](shape=(5, 5, 5), label=True)
Expand All @@ -103,6 +135,10 @@ def tearDownClass(self):
shutil.rmtree("./nc_workspace", ignore_errors=True)

def test_sq(self):
sq = ORTSmoothQuant(copy.deepcopy(self.zero_model), self.dataloader)
model = sq.transform(calib_iter=5, scales_per_op=False)
self.assertFalse(np.isnan(numpy_helper.to_array(model.model.graph.initializer[5])[0][0]))

sq = ORTSmoothQuant(copy.deepcopy(self.model), self.dataloader)
model = sq.transform(calib_iter=5, scales_per_op=False)
self.assertEqual(len([i for i in model.model.graph.node if i.op_type == "Mul"]), 1)
Expand Down

0 comments on commit cbb69bf

Please sign in to comment.