-
Notifications
You must be signed in to change notification settings - Fork 259
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update SmoothQuant algorithm with folding choice (#799)
Signed-off-by: Xin He <[email protected]> Co-authored-by: wenhuach21 <[email protected]> (cherry picked from commit 6a39f64)
- Loading branch information
Showing
9 changed files
with
745 additions
and
176 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
# | ||
# -*- coding: utf-8 -*- | ||
# | ||
# Copyright (c) 2021 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Torch.nn.Module Class Defination.""" | ||
# Note: Do not import this file unless you have already imported torch, | ||
# since the model classes inherit torch.nn.Module. | ||
import torch | ||
from packaging.version import Version | ||
|
||
|
||
def get_torch_version(): | ||
try: | ||
torch_version = torch.__version__.split('+')[0] | ||
except ValueError as e: # pragma: no cover | ||
assert False, 'Got an unknown version of torch: {}'.format(e) | ||
version = Version(torch_version) | ||
return version | ||
|
||
PT_VERSION = get_torch_version().release | ||
|
||
|
||
class QDQLinear(torch.nn.Module): | ||
def __init__(self, module, scale, zero_point, dtype): | ||
super().__init__() | ||
if PT_VERSION < Version("1.13.0").release: | ||
import torch.nn.quantized as nnq | ||
else: | ||
import torch.ao.nn.quantized as nnq | ||
self.add_module('quant', nnq.Quantize(scale, zero_point, dtype)) | ||
self.add_module('dequant', nnq.DeQuantize()) | ||
self.add_module('module', module) | ||
self.qdq_weight() | ||
|
||
def forward(self, X): | ||
X = self.quant(X) | ||
X = self.dequant(X) | ||
X = self.module(X) | ||
return X | ||
|
||
def qdq_weight(self): | ||
# update weight w/ QDQ | ||
from .smooth_quant import quant_dequant_w | ||
weith_qdq = quant_dequant_w(self.module) | ||
self.module.weight = torch.nn.Parameter(weith_qdq) | ||
|
||
|
||
class SQLinearWrapper(torch.nn.Module): | ||
def __init__(self, module, input_scale, input_minmax, dtype=torch.quint8): | ||
super().__init__() | ||
self.input_scale = input_scale | ||
self.dtype = dtype | ||
# calculate and only save scale, zero_point to avoid memory usage | ||
self.scale, self.zero_point = self._calculate_qparams(input_scale, input_minmax, dtype) | ||
self.add_module('sq_linear', module) | ||
self.ipex = False # a flag used for ipex inference | ||
|
||
def forward(self, X): | ||
if self.ipex: | ||
X = self.sq_linear(X) | ||
else: | ||
X = torch.mul(X, self.input_scale) | ||
X = self.sq_linear(X) | ||
return X | ||
|
||
def _calculate_qparams(self, input_scale, input_minmax, dtype=torch.quint8): | ||
# calculate scale and zero_point | ||
if dtype == torch.quint8: | ||
quant_min, quant_max = 0, 255 | ||
min_val = torch.min(input_minmax[0] * input_scale) | ||
max_val = torch.max(input_minmax[1] * input_scale) | ||
# work when min_val bigger than zero. | ||
min_val_neg = torch.min(min_val, torch.zeros_like(min_val)) | ||
max_val_pos = torch.max(max_val, torch.zeros_like(max_val)) | ||
scale = (max_val_pos - min_val_neg) / float(quant_max - quant_min) | ||
scale = torch.max(scale, torch.tensor([torch.finfo(torch.float32).eps])) | ||
zero_point = quant_min - torch.round(min_val_neg / scale).to(torch.int) | ||
zero_point = torch.clamp(zero_point, quant_min, quant_max) | ||
return scale, zero_point | ||
|
||
def _get_weight_scale(self): | ||
# get weight scale and zero_point | ||
from torch.ao.quantization.observer import default_per_channel_weight_observer | ||
obs = default_per_channel_weight_observer() | ||
obs(self.sq_linear.weight) | ||
scale, _ = obs.calculate_qparams() | ||
return scale | ||
|
||
def _recover_sq_linear(self): | ||
# remove mul and reset sq_linear for ipex inference | ||
scale = self.input_scale.view(1, self.input_scale.shape[0]) | ||
with torch.no_grad(): | ||
self.sq_linear.weight *= scale |
Oops, something went wrong.