Skip to content

Commit

Permalink
Enhance MatMul and Gather quantization (#899)
Browse files Browse the repository at this point in the history
Signed-off-by: Mengni Wang <[email protected]>
  • Loading branch information
mengniwang95 authored May 29, 2023
1 parent af10495 commit 1f9c4fc
Show file tree
Hide file tree
Showing 5 changed files with 105 additions and 23 deletions.
13 changes: 12 additions & 1 deletion neural_compressor/adaptor/ox_utils/operators/gather.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@ def convert(self, convert_format):
children = self.quantizer.model.get_children(node)

if any([i.op_type == 'DequantizeLinear' for i in parents]):
from onnx import numpy_helper
inputs = []
inputs.append(parents[0].input[0])
inputs.append(node.input[1])
Expand All @@ -80,7 +81,7 @@ def convert(self, convert_format):
node.name,
**kwargs)
self.quantizer.new_nodes.append(gather_node)
if any([i.op_type != 'QuantizeLinear' for i in children]): # pragma: no cover
if any([i.op_type != 'QuantizeLinear' for i in children]): # pragma: no cover
dq_inputs = []
dq_inputs.append(gather_new_output)
dq_inputs.extend(parents[0].input[1:])
Expand All @@ -90,12 +91,22 @@ def convert(self, convert_format):
node.name + '_DequantizeLinear')
self.quantizer.new_nodes.append(dq_node)

out_scale = 1.
out_zp = 0
for child in children:
if child.op_type == 'QuantizeLinear':
out_scale = numpy_helper.to_array(self.quantizer.model.get_initializer(child.input[1]))
out_zp = numpy_helper.to_array(self.quantizer.model.get_initializer(child.input[2]))
self.quantizer.remove_nodes.append(child)
for n in self.quantizer.model.get_children(child):
self.quantizer.model.replace_node_input(n,
child.output[0], gather_new_output)
if any([child.op_type == 'QuantizeLinear' for child in children]):
int8_tensor = numpy_helper.to_array(self.quantizer.model.get_initializer(parents[0].input[0]))
in_scale = numpy_helper.to_array(self.quantizer.model.get_initializer(parents[0].input[1]))
in_zp = numpy_helper.to_array(self.quantizer.model.get_initializer(parents[0].input[2]))
new_int8_tensor = (((int8_tensor.astype('float32') - in_zp) * in_scale) / out_scale).round() + out_zp
self.quantizer.model.set_initializer(parents[0].input[0], new_int8_tensor.astype(int8_tensor.dtype))
self.quantizer.remove_nodes.extend([node, parents[0]])

@qop_registry(op_types="Gather")
Expand Down
45 changes: 32 additions & 13 deletions neural_compressor/adaptor/ox_utils/operators/matmul.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,16 @@ def __init__(self, onnx_quantizer, onnx_node):
"""Initialization."""
super(MatMulOperator, self).__init__(onnx_quantizer, onnx_node)

def quantize_check(self):
"""Check if quantizaion can be done."""
node = self.node
if not all([self.quantizer.model.get_initializer(i) is None for i in node.input]):
return True
elif all([i not in self.quantizer.quantized_value_map for i in node.input]):
return False
else:
return True

def quantize(self):
"""Do quantizaion."""
node = self.node
Expand All @@ -39,7 +49,7 @@ def quantize(self):
else:
self.quantizer.quantize_inputs(node, [1])

if not self.disable_qdq_for_node_output or self.quantizer.mode != 'qdq':
if not self.disable_qdq_for_node_output:
self.quantizer.quantize_outputs(node)
node.name = node.name + "_quant"

Expand All @@ -48,6 +58,8 @@ def convert_check(self, convert_format):
node = self.node
assert convert_format in ['dynamic', 'static'], \
"convert format for {} should be in ['dynamic', 'static']".format(node.op_type)
if not node.name.endswith('_quant'):
return False
return True

def convert(self, convert_format):
Expand Down Expand Up @@ -112,22 +124,29 @@ def convert(self, convert_format):
if len(self.quantizer.model.get_children(node)) == 0 or \
not node.name.endswith('_quant'): # pragma: no cover
return
child = self.quantizer.model.get_children(node)[0]

qlinear_matmul_output = child.output[0]

qlinear_matmul_inputs = []
for parent in parents:
qlinear_matmul_inputs.extend(parent.input)
qlinear_matmul_inputs.extend(child.input[1:])

qlinear_matmul_node = onnx.helper.make_node("QLinearMatMul",
qlinear_matmul_inputs,
[qlinear_matmul_output],
node.name)
if self.disable_qdq_for_node_output:
for i in range(len(parents[0].input)):
qlinear_matmul_inputs.extend([parent.input[i] for parent in parents])
qlinear_matmul_node = onnx.helper.make_node("MatMulIntegerToFloat",
qlinear_matmul_inputs,
node.output,
node.name,
domain='com.microsoft')
else:
child = self.quantizer.model.get_children(node)[0]
qlinear_matmul_output = child.output[0]
for parent in parents:
qlinear_matmul_inputs.extend(parent.input)
qlinear_matmul_inputs.extend(child.input[1:])
qlinear_matmul_node = onnx.helper.make_node("QLinearMatMul",
qlinear_matmul_inputs,
[qlinear_matmul_output],
node.name)
self.quantizer.remove_nodes.append(child)
self.quantizer.new_nodes.append(qlinear_matmul_node)
self.quantizer.remove_nodes.extend(parents)
self.quantizer.remove_nodes.append(child)
self.quantizer.remove_nodes.append(node)

@qop_registry(op_types="QLinearMatMul")
Expand Down
62 changes: 57 additions & 5 deletions test/adaptor/onnxrt_adaptor/test_adaptor_onnxrt.py
Original file line number Diff line number Diff line change
Expand Up @@ -414,24 +414,45 @@ def build_matmul_model():
def build_matmul_model2():
A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [1, 1, 5, 5])
B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [1, 1, 5, 1])
C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [1, 1, 5, 1])
D = helper.make_tensor_value_info('D', TensorProto.FLOAT, [1, 1, 5, 1])
H = helper.make_tensor_value_info('H', TensorProto.FLOAT, [1, 1, 5, 1])


C1_init = helper.make_tensor('C1', TensorProto.FLOAT, [1, 1, 5, 5], np.random.random(25).tolist())
matmul_node = onnx.helper.make_node('MatMul', ['A', 'B'], ['C'], name='Matmul')
matmul_node2 = onnx.helper.make_node('MatMul', ['C1', 'C'], ['C2'], name='Matmul2')
matmul_node3 = onnx.helper.make_node('MatMul', ['A', 'C2'], ['C3'], name='Matmul3')
e_value = np.random.randint(2, size=(5)).astype(np.float32)
E_init = helper.make_tensor('E', TensorProto.FLOAT, [1, 1, 5, 1], e_value.reshape(5).tolist())
add = onnx.helper.make_node('Add', ['C', 'E'], ['D'], name='add')
add = onnx.helper.make_node('Add', ['C3', 'E'], ['D'], name='add')

f_value = np.random.randint(2, size=(5)).astype(np.float32)
F_init = helper.make_tensor('F', TensorProto.FLOAT, [1, 1, 5, 1], e_value.reshape(5).tolist())
add2 = onnx.helper.make_node('Add', ['D', 'F'], ['H'], name='add2')

graph = helper.make_graph([matmul_node, add, add2], 'test_graph_1', [A, B], [H], [E_init, F_init])
graph = helper.make_graph([matmul_node, matmul_node2, matmul_node3, add, add2], 'test_graph_1', [A, B], [H], [E_init, F_init, C1_init])
model = helper.make_model(graph)
model = helper.make_model(graph, **{'opset_imports': [helper.make_opsetid('', 13)]})
return model

def build_matmul_gather_model():
input = helper.make_tensor_value_info('input0', TensorProto.INT64, [1, 1])
output = helper.make_tensor_value_info('output0', TensorProto.FLOAT, [1, 1])

axes = helper.make_tensor('axes', TensorProto.INT64, [1], [1])
squeeze = onnx.helper.make_node('Squeeze', ['input0', 'axes'], ['A'], name='squeeze')

b_value = np.random.random((1, 2048))
B_init = helper.make_tensor('B', TensorProto.FLOAT, [1, 2048], b_value.reshape(2048).tolist())

gather = onnx.helper.make_node('Gather', ['B', 'A'], ['C'], name='gather')

d_value = np.random.random((2048, 1)).astype('float32')
D_init = helper.make_tensor('D', TensorProto.FLOAT, [2048, 1], d_value.reshape(2048).tolist())
matmul = onnx.helper.make_node('MatMul', ['C', 'D'], ['output0'])

graph = helper.make_graph([squeeze, gather, matmul], 'test_graph_1', [input], [output], [B_init, D_init, axes])
model = helper.make_model(graph, **{'opset_imports': [helper.make_opsetid('', 13)]})
return model

def build_model_with_gather():
b_value = np.random.randint(2, size=(10)).astype(np.int32)
B_init = helper.make_tensor('B', TensorProto.INT32, [10], b_value.reshape(10).tolist())
Expand Down Expand Up @@ -670,6 +691,7 @@ def setUpClass(self):
self.conv_model2 = build_conv_model2()
export_onnx_nlp_model(self.distilbert_model, self.distilbert_export_path, 14)
self.distilbert_model = onnx.load(self.distilbert_export_path)
self.gather_matmul_model = build_matmul_gather_model()
build_benchmark()

@classmethod
Expand Down Expand Up @@ -1093,6 +1115,14 @@ def sub_eval(model, result):

def eval(model):
return sub_eval(model, result)

dataset = Datasets("onnxrt_qdq")["dummy"]([(1,1,5,5), (1,1,5,1)])
dataloader = DATALOADERS["onnxrt_qdq"](dataset)
config = PostTrainingQuantConfig(approach='static')
q_model = quantization.fit(self.matmul_model2, config,
calib_dataloader=dataloader, eval_func=eval)
self.assertEqual(len([i for i in q_model.nodes() if i.op_type == 'QLinearMatMul']), 2)

config = PostTrainingQuantConfig(approach='static', quant_format='QDQ')
q_model = quantization.fit(self.matmul_model, config,
calib_dataloader=self.matmul_dataloader, eval_func=eval)
Expand All @@ -1118,6 +1148,28 @@ def eval(model):
calib_dataloader=self.matmul_dataloader, eval_func=eval)
self.assertTrue('QLinearMatMul' not in [i.op_type for i in q_model.nodes()])

config = PostTrainingQuantConfig(approach='static', recipes={'optypes_to_exclude_output_quant': ['MatMul']})
q_model = quantization.fit(self.matmul_model, config,
calib_dataloader=self.matmul_dataloader, eval_func=eval)
self.assertTrue('MatMulIntegerToFloat' in [i.op_type for i in q_model.nodes()])

dataset = Datasets("onnxrt_qdq")["dummy"]((1,1), low=0., high=0., dtype='int64')
dataloader = DATALOADERS["onnxrt_qdq"](dataset)
config = PostTrainingQuantConfig()
q_model = quantization.fit(self.gather_matmul_model, config,
calib_dataloader=dataloader, eval_func=eval)

config = PostTrainingQuantConfig(quant_format='QDQ')
q_model2 = quantization.fit(self.gather_matmul_model, config,
calib_dataloader=dataloader, eval_func=eval)

sess1 = ort.InferenceSession(q_model.model.SerializeToString(), providers=['CPUExecutionProvider'])
sess2 = ort.InferenceSession(q_model2.model.SerializeToString(), providers=['CPUExecutionProvider'])
for data, _ in dataloader:
output1 = sess1.run(None, {'input0': data})
output2 = sess2.run(None, {'input0': data})
self.assertAlmostEqual(output1[0][0], output2[0][0])

def test_smooth_quant(self):
config = PostTrainingQuantConfig(approach='static', recipes={'smooth_quant': True, \
'smooth_quant_args': {'alpha': 0.5}})
Expand Down
4 changes: 2 additions & 2 deletions test/adaptor/onnxrt_adaptor/test_onnxrt_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -496,10 +496,10 @@ def test_conv(self):

def test_matmul(self):
A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [1, 1, 5, 5])
B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [1, 1, 5, 1])
B_init = helper.make_tensor('B', TensorProto.FLOAT, [1, 1, 5, 1], np.random.random((1, 1, 5, 1)).reshape(5).tolist())
C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [1, 1, 5, 1])
matmul_node = onnx.helper.make_node('MatMul', ['A', 'B'], ['C'], name='Matmul')
graph = helper.make_graph([matmul_node], 'test_graph_1', [A, B], [C])
graph = helper.make_graph([matmul_node], 'test_graph_1', [A], [C], [B_init])
model = helper.make_model(graph)
q_config = {"Matmul": self.static_q_config}
quantize_params = {"A": [np.uint8(10.), np.float32(0)],
Expand Down
4 changes: 2 additions & 2 deletions test/config/test_pythonic_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@

def build_matmul_model():
A = helper.make_tensor_value_info('A', TensorProto.FLOAT, [1, 1, 5, 5])
B = helper.make_tensor_value_info('B', TensorProto.FLOAT, [1, 1, 5, 1])
B_init = helper.make_tensor('B', TensorProto.FLOAT, [1, 1, 5, 1], np.random.random([1, 1, 5, 1]).reshape(5).tolist())
C = helper.make_tensor_value_info('C', TensorProto.FLOAT, [1, 1, 5, 1])
D = helper.make_tensor_value_info('D', TensorProto.FLOAT, [1, 1, 5, 1])
H = helper.make_tensor_value_info('H', TensorProto.FLOAT, [1, 1, 5, 1])
Expand All @@ -40,7 +40,7 @@ def build_matmul_model():
f_value = np.random.randint(2, size=(5)).astype(np.float32)
F_init = helper.make_tensor('F', TensorProto.FLOAT, [1, 1, 5, 1], e_value.reshape(5).tolist())
add2 = onnx.helper.make_node('Add', ['D', 'F'], ['H'], name='add2')
graph = helper.make_graph([matmul_node, add, add2], 'test_graph_1', [A, B], [H], [E_init, F_init])
graph = helper.make_graph([matmul_node, add, add2], 'test_graph_1', [A], [H], [E_init, F_init, B_init])
model = helper.make_model(graph)
model = helper.make_model(graph, **{'opset_imports': [helper.make_opsetid('', 13)]})
return model
Expand Down

0 comments on commit 1f9c4fc

Please sign in to comment.