-
Notifications
You must be signed in to change notification settings - Fork 258
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add onnxrt weight only quant example (#1142)
Signed-off-by: Mengni Wang <[email protected]>
- Loading branch information
1 parent
12d05c8
commit 10c1331
Showing
7 changed files
with
464 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
41 changes: 41 additions & 0 deletions
41
.../nlp/huggingface_model/text_generation/llama/quantization/weight_only/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
Step-by-Step | ||
============ | ||
|
||
This example confirms llama's weight only accuracy on [lambada](https://huggingface.co/datasets/lambada). | ||
|
||
# Prerequisite | ||
|
||
## 1. Environment | ||
```shell | ||
pip install neural-compressor | ||
pip install -r requirements.txt | ||
``` | ||
> Note: Validated ONNX Runtime [Version](/docs/source/installation_guide.md#validated-software-environment). | ||
## 2. Prepare Model | ||
|
||
```bash | ||
optimum-cli export onnx --model decapoda-research/llama-7b-hf --task text-generation-with-past ./llama_7b | ||
``` | ||
|
||
# Run | ||
|
||
## 1. Quantization | ||
|
||
```bash | ||
bash run_quant.sh --input_model=/path/to/model \ # folder path of onnx model | ||
--output_model=/path/to/model_tune \ # folder path to save onnx model | ||
--batch_size=batch_size # optional \ | ||
--dataset=NeelNanda/pile-10k \ | ||
--tokenizer=decapoda-research/llama-7b-hf \ # model name or folder path containing all relevant files for model's tokenizer | ||
--algorithm=RTN # support RTN, AWQ, GPTQ | ||
``` | ||
|
||
## 2. Benchmark | ||
|
||
```bash | ||
bash run_benchmark.sh --input_model=path/to/model \ # folder path of onnx model | ||
--batch_size=batch_size \ # optional | ||
--tokenizer=decapoda-research/llama-7b-hf \ # model name or folder path containing all relevant files for model's tokenizer | ||
--tasks=lambada_openai | ||
``` |
270 changes: 270 additions & 0 deletions
270
examples/onnxrt/nlp/huggingface_model/text_generation/llama/quantization/weight_only/main.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,270 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint:disable=redefined-outer-name,logging-format-interpolation | ||
import os | ||
import onnx | ||
import random | ||
import torch | ||
import logging | ||
import argparse | ||
import numpy as np | ||
from datasets import load_dataset | ||
import onnxruntime as ort | ||
from torch.nn.functional import pad | ||
from torch.utils.data import DataLoader | ||
from intel_extension_for_transformers.evaluation.lm_eval import evaluate | ||
from optimum.onnxruntime import ORTModelForCausalLM | ||
from transformers import LlamaConfig, LlamaTokenizer | ||
|
||
logger = logging.getLogger(__name__) | ||
logging.basicConfig(format = "%(asctime)s - %(levelname)s - %(name)s - %(message)s", | ||
datefmt = "%m/%d/%Y %H:%M:%S", | ||
level = logging.WARN) | ||
|
||
parser = argparse.ArgumentParser( | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||
parser.add_argument( | ||
"--model_path", | ||
type=str, | ||
help="Folder path of pre-trained onnx model" | ||
) | ||
parser.add_argument( | ||
"--benchmark", | ||
action="store_true", \ | ||
default=False | ||
) | ||
parser.add_argument( | ||
"--tune", | ||
action="store_true", \ | ||
default=False, | ||
help="whether quantize the model" | ||
) | ||
parser.add_argument( | ||
"--output_model", | ||
type=str, | ||
default=None, | ||
help="output model path" | ||
) | ||
parser.add_argument( | ||
"--batch_size", | ||
default=1, | ||
type=int, | ||
) | ||
parser.add_argument( | ||
"--tokenizer", | ||
type=str, | ||
help="pretrained model name or path of tokenizer files", | ||
default="decapoda-research/llama-7b-hf" | ||
) | ||
parser.add_argument( | ||
"--workspace", | ||
type=str, | ||
help="workspace to save intermediate files", | ||
default="nc_workspace" | ||
) | ||
parser.add_argument( | ||
"--algorithm", | ||
type=str, | ||
default="RTN", | ||
choices=["RTN", "AWQ", "GPTQ"], | ||
help="weight only algorithm" | ||
) | ||
parser.add_argument( | ||
"--pad_max", | ||
default=196, | ||
type=int, | ||
) | ||
parser.add_argument( | ||
"--seqlen", | ||
default=2048, | ||
type=int, | ||
) | ||
parser.add_argument( | ||
"--tasks", | ||
nargs="+", | ||
default=["winogrande", "copa", "piqa", "rte", "hellaswag", "openbookqa", \ | ||
"lambada_openai", "lambada_standard", "wikitext"], | ||
type=str, | ||
help="tasks list for accuracy validation" | ||
) | ||
parser.add_argument( | ||
"--dataset", | ||
nargs="?", | ||
default="NeelNanda/pile-10k", | ||
const="NeelNanda/pile-10k" | ||
) | ||
args = parser.parse_args() | ||
|
||
# load model | ||
tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer) | ||
|
||
def tokenize_function(examples): | ||
example = tokenizer(examples["text"]) | ||
return example | ||
|
||
def eval_func(model): | ||
results = evaluate( | ||
model="hf-causal", | ||
model_args="pretrained=" + model + ",tokenizer="+ args.tokenizer, | ||
batch_size=args.batch_size, | ||
tasks=args.tasks, | ||
model_format="onnx" | ||
) | ||
for task_name in args.tasks: | ||
if task_name == "wikitext": | ||
print("Accuracy for %s is: %s" % (task_name, results["results"][task_name]["word_perplexity"])) | ||
else: | ||
print("Accuracy for %s is: %s" % (task_name, results["results"][task_name]["acc"])) | ||
|
||
class KVDataloader: | ||
def __init__(self, model_path, pad_max=196, batch_size=1, sub_folder="train"): | ||
self.pad_max = pad_max | ||
self.batch_size=batch_size | ||
dataset = load_dataset(args.dataset, split=sub_folder) | ||
dataset = dataset.map(tokenize_function, batched=True) | ||
dataset.set_format(type="torch", columns=["input_ids", "attention_mask"]) | ||
self.dataloader = DataLoader( | ||
dataset, | ||
batch_size=self.batch_size, | ||
shuffle=False, | ||
collate_fn=self.collate_batch, | ||
) | ||
self.sess = None | ||
if not model_path.endswith("decoder_model.onnx"): | ||
self.sess = ort.InferenceSession(os.path.join(os.path.dirname(model_path), "decoder_model.onnx")) | ||
|
||
|
||
def collate_batch(self, batch): | ||
|
||
input_ids_padded = [] | ||
attention_mask_padded = [] | ||
last_ind = [] | ||
|
||
for text in batch: | ||
input_ids = text["input_ids"] | ||
pad_len = self.pad_max - input_ids.shape[0] | ||
last_ind.append(input_ids.shape[0] - 1) | ||
attention_mask = torch.ones(len(input_ids)) | ||
input_ids = pad(input_ids, (0, pad_len), value=1) | ||
attention_mask = pad(attention_mask, (0, pad_len), value=0) | ||
input_ids_padded.append(input_ids) | ||
attention_mask_padded.append(attention_mask) | ||
return (torch.vstack(input_ids_padded), torch.vstack(attention_mask_padded)), torch.tensor(last_ind) | ||
|
||
|
||
def __iter__(self): | ||
try: | ||
for (input_ids, attention_mask), last_ind in self.dataloader: | ||
if self.sess is None: | ||
yield {"input_ids": input_ids[:, :-1].detach().cpu().numpy().astype("int64"), | ||
"attention_mask":attention_mask[:, :-1].detach().cpu().numpy().astype("int64")}, last_ind.detach().cpu().numpy() | ||
else: | ||
outputs = self.sess.run(None, {"input_ids": input_ids[:, :-1].detach().cpu().numpy().astype("int64"), | ||
"attention_mask":attention_mask[:, :-1].detach().cpu().numpy().astype("int64")}) | ||
ort_input = {} | ||
ort_input["input_ids"] = input_ids[:, -1].unsqueeze(0).detach().cpu().numpy().astype("int64") | ||
for i in range(int((len(outputs) - 1) / 2)): | ||
ort_input["past_key_values.{}.key".format(i)] = outputs[i*2+1] | ||
ort_input["past_key_values.{}.value".format(i)] = outputs[i*2+2] | ||
ort_input["attention_mask"] = np.zeros([self.batch_size, ort_input["past_key_values.0.key"].shape[2]+1], dtype="int64") | ||
yield ort_input, last_ind.detach().cpu().numpy() | ||
except StopIteration: | ||
return | ||
|
||
class GPTQDataloader: | ||
def __init__(self, model_path, batch_size=1, seqlen=2048, sub_folder="train"): | ||
import random | ||
random.seed(0) | ||
self.seqlen = seqlen | ||
|
||
self.batch_size=batch_size | ||
self.traindata = load_dataset(args.dataset, split=sub_folder) | ||
self.traindata = self.traindata.map(tokenize_function, batched=True) | ||
self.traindata.set_format(type="torch", columns=["input_ids", "attention_mask"]) | ||
self.sess = None | ||
if not model_path.endswith("decoder_model.onnx"): | ||
self.sess = ort.InferenceSession(os.path.join(os.path.dirname(model_path), "decoder_model.onnx")) | ||
|
||
def __iter__(self): | ||
try: | ||
while True: | ||
while True: | ||
i = random.randint(0, len(self.traindata) - 1) | ||
trainenc = self.traindata[i] | ||
if trainenc["input_ids"].shape[0] > self.seqlen: | ||
break | ||
i = random.randint(0, trainenc["input_ids"].shape[0] - self.seqlen - 1) | ||
j = i + self.seqlen | ||
inp = trainenc["input_ids"][i:j].unsqueeze(0) | ||
mask = torch.ones(inp.shape) | ||
if self.sess is None: | ||
yield {"input_ids": inp.detach().cpu().numpy().astype("int64"), | ||
"attention_mask": mask.detach().cpu().numpy().astype("int64")}, 0 | ||
else: | ||
outputs = self.sess.run(None, {"input_ids": inp[:, :-1].detach().cpu().numpy().astype("int64"), | ||
"attention_mask": mask[:, :-1].detach().cpu().numpy().astype("int64")}) | ||
ort_input = {} | ||
ort_input["input_ids"] = inp[:, -1].unsqueeze(0).detach().cpu().numpy().astype("int64") | ||
for i in range(int((len(outputs) - 1) / 2)): | ||
ort_input["past_key_values.{}.key".format(i)] = outputs[i*2+1] | ||
ort_input["past_key_values.{}.value".format(i)] = outputs[i*2+2] | ||
ort_input["attention_mask"] = np.zeros([self.batch_size, ort_input["past_key_values.0.key"].shape[2]+1], dtype="int64") | ||
yield ort_input, 0 | ||
|
||
except StopIteration: | ||
return | ||
|
||
if __name__ == "__main__": | ||
from neural_compressor import set_workspace | ||
set_workspace(args.workspace) | ||
|
||
if args.benchmark: | ||
eval_func(args.model_path) | ||
|
||
if args.tune: | ||
from neural_compressor import quantization, PostTrainingQuantConfig | ||
for model in ["decoder_model.onnx", "decoder_with_past_model.onnx"]: | ||
if args.algorithm.upper() == "RTN": | ||
dataloader = KVDataloader(os.path.join(args.model_path, model), pad_max=args.pad_max, batch_size=1) | ||
config = PostTrainingQuantConfig( | ||
approach="weight_only", | ||
calibration_sampling_size=[8], | ||
op_type_dict={".*": {"weight": {"algorithm": ["RTN"]}}}, | ||
) | ||
|
||
elif args.algorithm.upper() == "AWQ": | ||
dataloader = KVDataloader(os.path.join(args.model_path, model), pad_max=args.pad_max, batch_size=1) | ||
config = PostTrainingQuantConfig( | ||
approach="weight_only", | ||
calibration_sampling_size=[8], | ||
recipes={"awq_args": {"mse_range": False}}, | ||
op_type_dict={".*": {"weight": {"algorithm": ["AWQ"]}}}, | ||
) | ||
|
||
elif args.algorithm.upper() == "GPTQ": | ||
dataloader = GPTQDataloader(os.path.join(args.model_path, model), seqlen=args.seqlen, batch_size=1) | ||
config = PostTrainingQuantConfig( | ||
approach="weight_only", | ||
calibration_sampling_size=[8], | ||
op_type_dict={".*": {"weight": {"algorithm": ["GPTQ"], "scheme": ["asym"]}}}, | ||
) | ||
|
||
q_model = quantization.fit( | ||
os.path.join(args.model_path, model), | ||
config, | ||
calib_dataloader=dataloader) | ||
q_model.save(os.path.join(args.output_model, model)) |
11 changes: 11 additions & 0 deletions
11
...xrt/nlp/huggingface_model/text_generation/llama/quantization/weight_only/requirements.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
git+https://github.com/intel/intel-extension-for-transformers.git@b8302f99a93e5f09a80431cee2fb384755062664 | ||
git+https://github.com/EleutherAI/lm-evaluation-harness.git@83dbfbf6070324f3e5872f63e49d49ff7ef4c9b3 | ||
torch | ||
transformers | ||
accelerate | ||
onnx | ||
onnxruntime | ||
onnxruntime-extensions; python_version < '3.11' | ||
datasets | ||
optimum | ||
evaluate |
Oops, something went wrong.