-
Notifications
You must be signed in to change notification settings - Fork 258
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Refactor the TEQ to align with torch 3.x new API (#1766)
Refactor TEQuantizer Signed-off-by: yiliu30 <[email protected]>
- Loading branch information
Showing
4 changed files
with
257 additions
and
87 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
143 changes: 143 additions & 0 deletions
143
test/3x/torch/algorithms/weight_only/test_teq_quantizer.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
import copy | ||
import unittest | ||
|
||
import torch | ||
import transformers | ||
|
||
from neural_compressor.common import logger | ||
from neural_compressor.torch.algorithms.weight_only.teq import TEQuantizer | ||
from neural_compressor.torch.quantization import quantize | ||
|
||
|
||
def generate_random_corpus(nsamples=32): | ||
meta_data = [] | ||
for _ in range(nsamples): | ||
inp = torch.ones([1, 512], dtype=torch.long) | ||
tar = torch.ones([1, 512], dtype=torch.long) | ||
meta_data.append((inp, tar)) | ||
return meta_data | ||
|
||
|
||
def train( | ||
model, | ||
train_steps=100, | ||
lr=1e-3, | ||
warmup_ratio=0.05, | ||
gradient_accumulation_steps=1, | ||
logging_steps=10, | ||
betas=[0.9, 0.9], | ||
weight_decay=0, | ||
lr_scheduler_type="linear", | ||
): | ||
"""Train function.""" | ||
trained_alphas_list = [torch.ones([128], requires_grad=True)] | ||
optimizer = torch.optim.Adam(trained_alphas_list, lr=lr, weight_decay=weight_decay, betas=betas) | ||
|
||
lr_scheduler = transformers.get_scheduler( # pylint: disable=E1111 | ||
name=lr_scheduler_type, | ||
optimizer=optimizer, | ||
num_warmup_steps=int(train_steps * warmup_ratio) // gradient_accumulation_steps, | ||
num_training_steps=train_steps // gradient_accumulation_steps, | ||
) | ||
|
||
logger.info("start training") | ||
model.train() | ||
global_steps = 0 | ||
dataloader = generate_random_corpus() | ||
while global_steps <= train_steps: | ||
for inputs in dataloader: | ||
if isinstance(inputs, torch.Tensor): | ||
input_id = inputs | ||
elif isinstance(inputs, dict): | ||
input_id = inputs["input_ids"] | ||
else: | ||
input_id = inputs[0] | ||
output = model(input_id, labels=input_id) | ||
loss = output[0] / gradient_accumulation_steps | ||
loss.backward() | ||
global_steps += 1 | ||
|
||
if global_steps % logging_steps == 0: | ||
logger.info("steps: {}, loss: {}".format(global_steps, loss.detach().cpu().item())) | ||
|
||
if global_steps % gradient_accumulation_steps == 0: | ||
optimizer.step() | ||
optimizer.zero_grad() | ||
lr_scheduler.step() | ||
|
||
if global_steps >= train_steps: # pragma: no cover | ||
break | ||
|
||
logger.info("finish training") | ||
model.eval() | ||
return None | ||
|
||
|
||
class TestTEQWeightOnlyQuant(unittest.TestCase): | ||
@classmethod | ||
def setUpClass(self): | ||
self.gptj = transformers.AutoModelForCausalLM.from_pretrained( | ||
"hf-internal-testing/tiny-random-GPTJForCausalLM", | ||
torchscript=True, | ||
) | ||
self.gptj.seqlen = 512 | ||
|
||
def train_func(self): | ||
pass | ||
|
||
def test_teq(self): | ||
example_inputs = torch.ones([1, 512], dtype=torch.long) | ||
test_input = torch.ones([1, 512], dtype=torch.long) | ||
model = copy.deepcopy(self.gptj) | ||
out0 = model(test_input) | ||
|
||
weight_config = { | ||
# 'op_name': (bit, group_size, scheme) | ||
"transformer.h.0.mlp.fc_in": {"bits": 8, "group_size": -1, "scheme": "sym"}, | ||
"transformer.h.0.mlp.fc_out": {"bits": 4, "group_size": 32, "scheme": "asym"}, | ||
} | ||
absorb_dict = {"transformer.h.0.mlp.fc_in": ["transformer.h.0.mlp.fc_out"]} | ||
|
||
quantizer = TEQuantizer( | ||
quant_config=weight_config, folding=True, absorb_to_layer=absorb_dict, example_inputs=example_inputs | ||
) | ||
model = quantizer.quantize(copy.deepcopy(self.gptj), run_fn=train) | ||
out1 = model(test_input) | ||
self.assertTrue(torch.allclose(out1[0], out0[0], atol=0.03)) | ||
|
||
quant_config = { | ||
"teq": { | ||
"global": { | ||
"dtype": "fp32", | ||
}, | ||
"local": { | ||
"transformer.h.0.mlp.fc_in": { | ||
"dtype": "int", | ||
"bits": 8, | ||
"group_size": -1, | ||
"use_sym": True, | ||
"folding": True, | ||
"absorb_to_layer": {"transformer.h.0.mlp.fc_in": ["transformer.h.0.mlp.fc_out"]}, | ||
}, | ||
"transformer.h.0.mlp.fc_out": { | ||
"dtype": "int", | ||
"bits": 4, | ||
"group_size": 32, | ||
"use_sym": False, | ||
"folding": True, | ||
"absorb_to_layer": {"transformer.h.0.mlp.fc_in": ["transformer.h.0.mlp.fc_out"]}, | ||
}, | ||
}, | ||
} | ||
} | ||
qdq_model = quantize( | ||
model=copy.deepcopy(self.gptj), quant_config=quant_config, run_fn=train, example_inputs=example_inputs | ||
) | ||
self.assertTrue(isinstance(qdq_model, torch.nn.Module)) | ||
out2 = qdq_model(test_input) | ||
self.assertTrue(torch.allclose(out1[0], out2[0])) | ||
self.assertTrue(torch.allclose(out2[0], out0[0], atol=0.03)) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
Oops, something went wrong.