-
Notifications
You must be signed in to change notification settings - Fork 258
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Enable Pruning 2.x API for TF Adaptor (#937)
Signed-off-by: zehao-intel <[email protected]>
- Loading branch information
1 parent
ca10b33
commit 072c139
Showing
19 changed files
with
1,583 additions
and
127 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
38 changes: 38 additions & 0 deletions
38
examples/tensorflow/image_recognition/ViT/pruning/magnitude/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
Step-by-Step | ||
============ | ||
|
||
This document is used to list steps of reproducing Intel® Neural Compressor magnitude pruning feature on ViT model. | ||
|
||
|
||
# Prerequisite | ||
|
||
## 1. Environment | ||
|
||
### Install Intel® Neural Compressor | ||
```shell | ||
pip install neural-compressor | ||
``` | ||
### Install requirements | ||
```shell | ||
pip install -r requirements.txt | ||
``` | ||
|
||
## 2. Prepare Model | ||
Run the script to save a baseline model to the directory './ViT_Model'. | ||
```python | ||
python prepare_model.py | ||
``` | ||
|
||
# Run | ||
Run the command to prune the baseline model and save it into a given path. | ||
The CIFAR100 dataset will be automatically loaded. | ||
|
||
```shell | ||
python main.py --output_model=/path/to/output_model/ | ||
``` | ||
|
||
If you want to accelerate pruning with multi-node distributed training and evaluation, you only need to add twp arguments and use horovod to run main.py. Run the command to get pruned model with multi-node distributed training and evaluation. | ||
|
||
```shell | ||
horovodrun -np <num_of_processes> -H <hosts> python main.py --output_model=/path/to/output_model/ --train_distributed --evaluation_distributed | ||
``` |
147 changes: 147 additions & 0 deletions
147
examples/tensorflow/image_recognition/ViT/pruning/magnitude/main.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
# | ||
# -*- coding: utf-8 -*- | ||
# | ||
# Copyright (c) 2023 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
import numpy as np | ||
import tensorflow as tf | ||
import tensorflow_addons as tfa | ||
from neural_compressor.utils import logger | ||
from neural_compressor.data import DataLoader | ||
from neural_compressor.adaptor import FRAMEWORKS | ||
from neural_compressor.conf.dotdict import DotDict | ||
from neural_compressor.training import WeightPruningConfig | ||
from neural_compressor.training import prepare_compression | ||
from neural_compressor.utils import create_obj_from_config | ||
from neural_compressor.conf.config import default_workspace | ||
|
||
flags = tf.compat.v1.flags | ||
FLAGS = flags.FLAGS | ||
|
||
## Required parameters | ||
flags.DEFINE_string( | ||
'output_model', None, 'The output pruned model.') | ||
|
||
flags.DEFINE_integer( | ||
'start_step', 0, 'The start step of pruning process.') | ||
|
||
flags.DEFINE_integer( | ||
'end_step', 9, 'The end step of pruning process.') | ||
|
||
flags.DEFINE_bool( | ||
'train_distributed', False, 'Whether to perform distributed training.') | ||
|
||
flags.DEFINE_bool( | ||
'evaluation_distributed', False, 'Whether to perform distributed evaluation.') | ||
|
||
# Prepare dataset | ||
def prepare_dataset(): | ||
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar100.load_data() | ||
y_train = tf.keras.utils.to_categorical(y_train, 100) | ||
y_test = tf.keras.utils.to_categorical(y_test, 100) | ||
logger.info(f"Training set: x_shape-{x_train.shape}, y_shape-{y_train.shape}") | ||
logger.info(f"Test set: x_shape-{x_test.shape}, y_shape-{y_test.shape}") | ||
return TrainDataset(x_train, y_train), EvalDataset(x_test, y_test) | ||
|
||
# Build TrainDataset and EvalDataset | ||
class TrainDataset(object): | ||
def __init__(self, x_train, y_train): | ||
self.x_train = x_train | ||
self.y_train = y_train | ||
|
||
def __len__(self): | ||
return len(self.x_train) | ||
|
||
def __getitem__(self, idx): | ||
return self.x_train[idx], self.y_train[idx] | ||
|
||
class EvalDataset(object): | ||
def __init__(self, x_test, y_test): | ||
self.x_test = x_test | ||
self.y_test = y_test | ||
|
||
def __len__(self): | ||
return len(self.x_test) | ||
|
||
def __getitem__(self, idx): | ||
return self.x_test[idx], self.y_test[idx] | ||
|
||
def train(model, adaptor, compression_manager, train_dataloader): | ||
train_cfg = { | ||
'epoch': 15, | ||
'start_epoch': 0, | ||
'execution_mode': 'eager', | ||
'criterion': {'CrossEntropyLoss': {'reduction': 'sum_over_batch_size', 'from_logits': True}}, | ||
'optimizer': {'AdamW': {'learning_rate': 1e-03, 'weight_decay': 1e-04}}, | ||
} | ||
train_cfg = DotDict(train_cfg) | ||
train_func = create_obj_from_config.create_train_func('tensorflow', \ | ||
train_dataloader, \ | ||
adaptor, \ | ||
train_cfg, \ | ||
hooks=compression_manager.callbacks.callbacks_list[0].hooks, \ | ||
callbacks=compression_manager.callbacks.callbacks_list[0]) | ||
train_func(model) | ||
|
||
def evaluate(model, adaptor, eval_dataloader): | ||
eval_cfg = {'accuracy': {'metric': {'topk': 1}, | ||
'iteration': -1, | ||
'multi_metrics': None} | ||
} | ||
eval_cfg = DotDict(eval_cfg) | ||
eval_func = create_obj_from_config.create_eval_func('tensorflow', \ | ||
eval_dataloader, \ | ||
adaptor, \ | ||
eval_cfg.accuracy.metric, \ | ||
eval_cfg.accuracy.postprocess, \ | ||
fp32_baseline = False) | ||
return eval_func(model) | ||
|
||
if __name__ == '__main__': | ||
training_set, test_set = prepare_dataset() | ||
train_dataloader = DataLoader(dataset=training_set, batch_size=128, | ||
framework='tensorflow', distributed=FLAGS.train_distributed) | ||
eval_dataloader = DataLoader(dataset=test_set, batch_size=256, | ||
framework='tensorflow', distributed=FLAGS.evaluation_distributed) | ||
|
||
framework_specific_info = { | ||
'device': 'cpu', 'random_seed': 9527, | ||
'workspace_path': default_workspace, | ||
'q_dataloader': None, 'format': 'default', | ||
'backend': 'default', 'inputs': [], 'outputs': [] | ||
} | ||
adaptor = FRAMEWORKS['keras'](framework_specific_info) | ||
|
||
configs = WeightPruningConfig( | ||
backend='itex', | ||
pruning_type='magnitude', | ||
target_sparsity=0.7, | ||
start_step=FLAGS.start_step, | ||
end_step=FLAGS.end_step, | ||
pruning_op_types=['Conv', 'Dense'] | ||
) | ||
compression_manager = prepare_compression(model='./ViT_Model', confs=configs) | ||
compression_manager.callbacks.on_train_begin() | ||
model = compression_manager.model | ||
|
||
train(model, adaptor, compression_manager, train_dataloader) | ||
print("Pruned model score is ",evaluate(model, adaptor, eval_dataloader)) | ||
|
||
|
||
compression_manager.callbacks.on_train_end() | ||
compression_manager.save(FLAGS.output_model) | ||
stats, sparsity = model.report_sparsity() | ||
logger.info(stats) | ||
logger.info(sparsity) |
Oops, something went wrong.