Skip to content
This repository has been archived by the owner on Oct 25, 2024. It is now read-only.

Unify the 'iters' and 'calib_iters' in AutoRound config #1648

Merged
merged 3 commits into from
Jul 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -532,7 +532,7 @@ def default_calib_func(model):
"autoround_args": {
"n_samples": config.nsamples,
"seqlen": config.calib_len,
"iters": config.iters,
"iters": config.calib_iters,
"scale_dtype": config.scale_dtype,
"enable_quanted_input": not config.disable_quanted_input,
"lr": config.lr,
Expand Down
12 changes: 9 additions & 3 deletions intel_extension_for_transformers/transformers/utils/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -1065,7 +1065,7 @@ def __init__(
minmax_lr: float = None,
disable_quanted_input: bool = False,
nsamples: int = 512,
iters: int = 200,
iters: int = None,
use_ggml: bool = False,
use_neural_speed: bool = False,
llm_int8_skip_modules=None,
Expand All @@ -1091,7 +1091,6 @@ def __init__(
self.lr = lr
self.minmax_lr = minmax_lr
self.disable_quanted_input = disable_quanted_input
self.iters = iters
self.llm_int8_skip_modules = (
llm_int8_skip_modules if llm_int8_skip_modules else []
)
Expand All @@ -1101,7 +1100,14 @@ def __init__(
self.calib_dataloader = kwargs.get("calib_dataloader", None)
self.calib_len = kwargs.get("calib_len", 2048)
self.calib_func = kwargs.get("calib_func", None)
self.calib_iters = kwargs.get("calib_iters", 100)
calib_iters = kwargs.get("calib_iters", None)
if iters is not None:
self.calib_iters = iters
if calib_iters is not None:
logger.info("cannot be set simultaneously for 'iters' and 'calib_iters', "
"we will use 'iters' as calibration iterations!")
else:
self.calib_iters = 200 if calib_iters is None else calib_iters
self.scheme = "sym" if self.sym else "asym"
if isinstance(compute_dtype, torch.dtype):
self.compute_dtype = convert_dtype_torch2str(compute_dtype)
Expand Down
Loading