Skip to content

Commit

Permalink
update tutorial
Browse files Browse the repository at this point in the history
  • Loading branch information
inoue0426 committed Nov 7, 2024
1 parent 4c599ab commit cde6a1f
Showing 1 changed file with 59 additions and 69 deletions.
128 changes: 59 additions & 69 deletions Tutorial.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,16 @@
"execution_count": 3,
"id": "869740ff-e2fc-43b8-9a0f-49e637522ec4",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/y3/ssnk1ytd3m5bjmrchh2lt74srg76p8/T/ipykernel_84689/2505546517.py:1: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
" test = torch.load(\"test.pt\")\n"
]
}
],
"source": [
"test = torch.load(\"test.pt\")"
]
Expand All @@ -49,81 +58,44 @@
"metadata": {
"scrolled": true
},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/y3/ssnk1ytd3m5bjmrchh2lt74srg76p8/T/ipykernel_84689/3516971570.py:3: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
" model = torch.load(\"sample.pt\", map_location=device)\n"
]
},
{
"ename": "AttributeError",
"evalue": "'Linear' object has no attribute '_lazy_load_hook'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[4], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m tmp \u001b[38;5;241m=\u001b[39m get_ipython()\u001b[38;5;241m.\u001b[39mgetoutput(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mls | grep pt\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 2\u001b[0m device \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mdevice(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcuda\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mcuda\u001b[38;5;241m.\u001b[39mis_available() \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcpu\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m----> 3\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msample.pt\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmap_location\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdevice\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/torch/lib/python3.10/site-packages/torch/serialization.py:1360\u001b[0m, in \u001b[0;36mload\u001b[0;34m(f, map_location, pickle_module, weights_only, mmap, **pickle_load_args)\u001b[0m\n\u001b[1;32m 1358\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m pickle\u001b[38;5;241m.\u001b[39mUnpicklingError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 1359\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m pickle\u001b[38;5;241m.\u001b[39mUnpicklingError(_get_wo_message(\u001b[38;5;28mstr\u001b[39m(e))) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 1360\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_load\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1361\u001b[0m \u001b[43m \u001b[49m\u001b[43mopened_zipfile\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1362\u001b[0m \u001b[43m \u001b[49m\u001b[43mmap_location\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1363\u001b[0m \u001b[43m \u001b[49m\u001b[43mpickle_module\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1364\u001b[0m \u001b[43m \u001b[49m\u001b[43moverall_storage\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moverall_storage\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1365\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mpickle_load_args\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1366\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1367\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m mmap:\n\u001b[1;32m 1368\u001b[0m f_name \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(f, \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mf\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\n",
"File \u001b[0;32m~/miniconda3/envs/torch/lib/python3.10/site-packages/torch/serialization.py:1848\u001b[0m, in \u001b[0;36m_load\u001b[0;34m(zip_file, map_location, pickle_module, pickle_file, overall_storage, **pickle_load_args)\u001b[0m\n\u001b[1;32m 1846\u001b[0m \u001b[38;5;28;01mglobal\u001b[39;00m _serialization_tls\n\u001b[1;32m 1847\u001b[0m _serialization_tls\u001b[38;5;241m.\u001b[39mmap_location \u001b[38;5;241m=\u001b[39m map_location\n\u001b[0;32m-> 1848\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43munpickler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1849\u001b[0m _serialization_tls\u001b[38;5;241m.\u001b[39mmap_location \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1851\u001b[0m torch\u001b[38;5;241m.\u001b[39m_utils\u001b[38;5;241m.\u001b[39m_validate_loaded_sparse_tensors()\n",
"File \u001b[0;32m~/miniconda3/envs/torch/lib/python3.10/site-packages/torch/nn/modules/module.py:1931\u001b[0m, in \u001b[0;36mModule.__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 1929\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01min\u001b[39;00m modules:\n\u001b[1;32m 1930\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m modules[name]\n\u001b[0;32m-> 1931\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(\n\u001b[1;32m 1932\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mtype\u001b[39m(\u001b[38;5;28mself\u001b[39m)\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m object has no attribute \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1933\u001b[0m )\n",
"\u001b[0;31mAttributeError\u001b[0m: 'Linear' object has no attribute '_lazy_load_hook'"
]
}
],
"source": [
"tmp = !ls | grep pt\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"model = torch.load(\"sample.pt\", map_location=device)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"id": "subject-allen",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Accuracy</th>\n",
" <th>Precision</th>\n",
" <th>Recall</th>\n",
" <th>F1 Score</th>\n",
" <th>True Positive</th>\n",
" <th>True Negative</th>\n",
" <th>False Positive</th>\n",
" <th>False Negative</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.771375</td>\n",
" <td>0.740881</td>\n",
" <td>0.783245</td>\n",
" <td>0.761474</td>\n",
" <td>1178</td>\n",
" <td>1312</td>\n",
" <td>412</td>\n",
" <td>326</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Accuracy Precision Recall F1 Score True Positive True Negative \\\n",
"0 0.771375 0.740881 0.783245 0.761474 1178 1312 \n",
"\n",
" False Positive False Negative \n",
"0 412 326 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"drGAT.eval(model, test)"
"predict, res = drGAT.eval(model, test)\n",
"res"
]
},
{
Expand All @@ -132,14 +104,32 @@
"id": "korean-recipe",
"metadata": {},
"outputs": [],
"source": [
"predict"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9519ef9f-5720-4011-bf75-a4054bbd7bc1",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "f2ae47e2-c427-4669-b867-e4d093e88b67",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "drGAT",
"display_name": "torch",
"language": "python",
"name": "drgat"
"name": "torch"
},
"language_info": {
"codemirror_mode": {
Expand All @@ -151,7 +141,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
"version": "3.10.15"
}
},
"nbformat": 4,
Expand Down

0 comments on commit cde6a1f

Please sign in to comment.