Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Chat Use CVmodel #1607

Merged
merged 23 commits into from
Jul 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 24 additions & 3 deletions api/db/services/dialog_service.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import json
import re
from copy import deepcopy

Expand All @@ -26,6 +28,7 @@
from rag.nlp import keyword_extraction
from rag.nlp.search import index_name
from rag.utils import rmSpace, num_tokens_from_string, encoder
from api.utils.file_utils import get_project_base_directory


class DialogService(CommonService):
Expand Down Expand Up @@ -73,6 +76,15 @@ def count():
return max_length, msg


def llm_id2llm_type(llm_id):
fnm = os.path.join(get_project_base_directory(), "conf")
llm_factories = json.load(open(os.path.join(fnm, "llm_factories.json"), "r"))
for llm_factory in llm_factories["factory_llm_infos"]:
for llm in llm_factory["llm"]:
if llm_id == llm["llm_name"]:
return llm["model_type"].strip(",")[-1]


def chat(dialog, messages, stream=True, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
llm = LLMService.query(llm_name=dialog.llm_id)
Expand All @@ -91,7 +103,10 @@ def chat(dialog, messages, stream=True, **kwargs):

questions = [m["content"] for m in messages if m["role"] == "user"]
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0])
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
if llm_id2llm_type(dialog.llm_id) == "image2text":
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)

prompt_config = dialog.prompt_config
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
Expand Down Expand Up @@ -328,7 +343,10 @@ def get_table():


def relevant(tenant_id, llm_id, question, contents: list):
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
prompt = """
You are a grader assessing relevance of a retrieved document to a user question.
It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
Expand All @@ -347,7 +365,10 @@ def relevant(tenant_id, llm_id, question, contents: list):


def rewrite(tenant_id, llm_id, question):
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
if llm_id2llm_type(llm_id) == "image2text":
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
else:
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
prompt = """
You are an expert at query expansion to generate a paraphrasing of a question.
I can't retrieval relevant information from the knowledge base by using user's question directly.
Expand Down
2 changes: 1 addition & 1 deletion api/db/services/llm_service.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ def model_instance(cls, tenant_id, llm_type,
elif llm_type == LLMType.SPEECH2TEXT.value:
mdlnm = tenant.asr_id
elif llm_type == LLMType.IMAGE2TEXT.value:
mdlnm = tenant.img2txt_id
mdlnm = tenant.img2txt_id if not llm_name else llm_name
elif llm_type == LLMType.CHAT.value:
mdlnm = tenant.llm_id if not llm_name else llm_name
elif llm_type == LLMType.RERANK:
Expand Down
Loading