Skip to content

Commit

Permalink
upgrade laws parser of docx (#1332)
Browse files Browse the repository at this point in the history
### What problem does this PR solve?


### Type of change

- [x] Refactoring
  • Loading branch information
KevinHuSh authored Jul 1, 2024
1 parent 5eb21b9 commit 92e9320
Show file tree
Hide file tree
Showing 4 changed files with 56 additions and 53 deletions.
6 changes: 5 additions & 1 deletion api/apps/chunk_app.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
from elasticsearch_dsl import Q

from rag.app.qa import rmPrefix, beAdoc
from rag.nlp import search, rag_tokenizer
from rag.nlp import search, rag_tokenizer, keyword_extraction
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils import rmSpace
from api.db import LLMType, ParserType
Expand Down Expand Up @@ -268,6 +268,10 @@ def retrieval_test():
rerank_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])

if req.get("keyword", False):
chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)

ranks = retrievaler.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl)
Expand Down
4 changes: 3 additions & 1 deletion api/db/services/dialog_service.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api.settings import chat_logger, retrievaler
from rag.app.resume import forbidden_select_fields4resume
from rag.nlp.rag_tokenizer import is_chinese
from rag.nlp import keyword_extraction
from rag.nlp.search import index_name
from rag.utils import rmSpace, num_tokens_from_string, encoder

Expand Down Expand Up @@ -121,6 +121,8 @@ def chat(dialog, messages, stream=True, **kwargs):
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
else:
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
Expand Down
72 changes: 27 additions & 45 deletions rag/app/laws.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,62 +54,44 @@ def __call__(self, filename, binary=None, from_page=0, to_page=100000):
self.doc = Document(
filename) if not binary else Document(BytesIO(binary))
pn = 0
last_question, last_answer, last_level = "", "", -1
lines = []
root = DocxNode()
point = root
bull = bullets_category([p.text for p in self.doc.paragraphs])
for p in self.doc.paragraphs:
if pn > to_page:
break
question_level, p_text = 0, ''
if from_page <= pn < to_page and p.text.strip():
question_level, p_text = docx_question_level(p, bull)
if not question_level or question_level > 6: # not a question
last_answer = f'{last_answer}\n{p_text}'
else: # is a question
if last_question:
while last_level <= point.level:
point = point.parent
new_node = DocxNode(last_question, last_answer, last_level, [], point)
point.childs.append(new_node)
point = new_node
last_question, last_answer, last_level = '', '', -1
last_level = question_level
last_answer = ''
last_question = p_text

question_level, p_text = docx_question_level(p, bull)
if not p_text.strip("\n"):continue
lines.append((question_level, p_text))

for run in p.runs:
if 'lastRenderedPageBreak' in run._element.xml:
pn += 1
continue
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
pn += 1
if last_question:
while last_level <= point.level:
point = point.parent
new_node = DocxNode(last_question, last_answer, last_level, [], point)
point.childs.append(new_node)
point = new_node
last_question, last_answer, last_level = '', '', -1
traversal_queue = [root]
while traversal_queue:
current_node: DocxNode = traversal_queue.pop()
sum_text = f'{self.__clean(current_node.question)}\n{self.__clean(current_node.answer)}'
if not current_node.childs and not current_node.answer.strip():
continue
for child in current_node.childs:
sum_text = f'{sum_text}\n{self.__clean(child.question)}'
traversal_queue.insert(0, child)
lines.append(self.__clean(sum_text))
return [l for l in lines if l]
class DocxNode:
def __init__(self, question: str = '', answer: str = '', level: int = 0, childs: list = [], parent = None) -> None:
self.question = question
self.answer = answer
self.level = level
self.childs = childs
self.parent = parent

visit = [False for _ in range(len(lines))]
sections = []
for s in range(len(lines)):
e = s + 1
while e < len(lines):
if lines[e][0] <= lines[s][0]:
break
e += 1
if e - s == 1 and visit[s]: continue
sec = []
next_level = lines[s][0] + 1
while not sec and next_level < 22:
for i in range(s+1, e):
if lines[i][0] != next_level: continue
sec.append(lines[i][1])
visit[i] = True
next_level += 1
sec.insert(0, lines[s][1])

sections.append("\n".join(sec))
return [l for l in sections if l]

def __str__(self) -> str:
return f'''
question:{self.question},
Expand Down
27 changes: 21 additions & 6 deletions rag/nlp/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -514,16 +514,19 @@ def add_chunk(t, pos):

return cks


def docx_question_level(p, bull = -1):
txt = re.sub(r"\u3000", " ", p.text).strip()
if p.style.name.startswith('Heading'):
return int(p.style.name.split(' ')[-1]), re.sub(r"\u3000", " ", p.text).strip()
return int(p.style.name.split(' ')[-1]), txt
else:
if bull < 0:
return 0, re.sub(r"\u3000", " ", p.text).strip()
return 0, txt
for j, title in enumerate(BULLET_PATTERN[bull]):
if re.match(title, re.sub(r"\u3000", " ", p.text).strip()):
return j+1, re.sub(r"\u3000", " ", p.text).strip()
return 0, re.sub(r"\u3000", " ", p.text).strip()
if re.match(title, txt):
return j+1, txt
return len(BULLET_PATTERN[bull]), txt


def concat_img(img1, img2):
if img1 and not img2:
Expand All @@ -544,6 +547,7 @@ def concat_img(img1, img2):

return new_image


def naive_merge_docx(sections, chunk_token_num=128, delimiter="\n。;!?"):
if not sections:
return []
Expand Down Expand Up @@ -573,4 +577,15 @@ def add_chunk(t, image, pos=""):
for sec, image in sections:
add_chunk(sec, image, '')

return cks, images
return cks, images


def keyword_extraction(chat_mdl, content):
prompt = """
You're a question analyzer.
1. Please give me the most important keyword/phrase of this question.
Answer format: (in language of user's question)
- keyword:
"""
kwd, _ = chat_mdl.chat(prompt, [{"role": "user", "content": content}], {"temperature": 0.2})
return kwd

0 comments on commit 92e9320

Please sign in to comment.