Implemented Dimensionality Reduction (PCA,LDA) and Clustering techniques (K-means)
DATASET: I have used two Datasets from UCI Library: 1.IRIS-Data 2.Arcene-Data 3.Breast-Cancer-Wisconsin-Data
Projection of the original data in PCA space (PC1 versus PC2; PC1 versus PC3 and PC2 versus PC3) and 1-dimensional LDA space
RESULTS: For K-means: 1. IRIS-Data: a) Internal Measures: Parity:0.866666666667 Fmeasure:0.868622315348
b) External Measures:
BetaCv:0.309307295731
Nc:0.862679327162
2. Breast-Cancer-Wisconsin-Data
a) Internal Measures:
Parity: 0.655221745351
Fmeasure: 0.637355865642
b) External Measures:
BetaCv: 0.264134236196
Nc: 0.690044336725