Skip to content

Commit

Permalink
Properly support SDXL diffusers loras for unet.
Browse files Browse the repository at this point in the history
  • Loading branch information
comfyanonymous committed Jul 5, 2023
1 parent 8d694cc commit acf9519
Show file tree
Hide file tree
Showing 2 changed files with 128 additions and 116 deletions.
127 changes: 11 additions & 116 deletions comfy/sd.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,35 +59,6 @@ def load_clip_weights(model, sd):
"self_attn.out_proj": "self_attn_out_proj",
}

LORA_UNET_MAP_ATTENTIONS = {
"proj_in": "proj_in",
"proj_out": "proj_out",
}

transformer_lora_blocks = {
"transformer_blocks.{}.attn1.to_q": "transformer_blocks_{}_attn1_to_q",
"transformer_blocks.{}.attn1.to_k": "transformer_blocks_{}_attn1_to_k",
"transformer_blocks.{}.attn1.to_v": "transformer_blocks_{}_attn1_to_v",
"transformer_blocks.{}.attn1.to_out.0": "transformer_blocks_{}_attn1_to_out_0",
"transformer_blocks.{}.attn2.to_q": "transformer_blocks_{}_attn2_to_q",
"transformer_blocks.{}.attn2.to_k": "transformer_blocks_{}_attn2_to_k",
"transformer_blocks.{}.attn2.to_v": "transformer_blocks_{}_attn2_to_v",
"transformer_blocks.{}.attn2.to_out.0": "transformer_blocks_{}_attn2_to_out_0",
"transformer_blocks.{}.ff.net.0.proj": "transformer_blocks_{}_ff_net_0_proj",
"transformer_blocks.{}.ff.net.2": "transformer_blocks_{}_ff_net_2",
}

for i in range(10):
for k in transformer_lora_blocks:
LORA_UNET_MAP_ATTENTIONS[k.format(i)] = transformer_lora_blocks[k].format(i)


LORA_UNET_MAP_RESNET = {
"in_layers.2": "resnets_{}_conv1",
"emb_layers.1": "resnets_{}_time_emb_proj",
"out_layers.3": "resnets_{}_conv2",
"skip_connection": "resnets_{}_conv_shortcut"
}

def load_lora(lora, to_load):
patch_dict = {}
Expand Down Expand Up @@ -188,39 +159,9 @@ def load_lora(lora, to_load):
print("lora key not loaded", x)
return patch_dict

def model_lora_keys(model, key_map={}):
def model_lora_keys_clip(model, key_map={}):
sdk = model.state_dict().keys()

counter = 0
for b in range(12):
tk = "diffusion_model.input_blocks.{}.1".format(b)
up_counter = 0
for c in LORA_UNET_MAP_ATTENTIONS:
k = "{}.{}.weight".format(tk, c)
if k in sdk:
lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP_ATTENTIONS[c])
key_map[lora_key] = k
up_counter += 1
if up_counter >= 4:
counter += 1
for c in LORA_UNET_MAP_ATTENTIONS:
k = "diffusion_model.middle_block.1.{}.weight".format(c)
if k in sdk:
lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c])
key_map[lora_key] = k
counter = 3
for b in range(12):
tk = "diffusion_model.output_blocks.{}.1".format(b)
up_counter = 0
for c in LORA_UNET_MAP_ATTENTIONS:
k = "{}.{}.weight".format(tk, c)
if k in sdk:
lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP_ATTENTIONS[c])
key_map[lora_key] = k
up_counter += 1
if up_counter >= 4:
counter += 1
counter = 0
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
clip_l_present = False
for b in range(32):
Expand All @@ -244,69 +185,23 @@ def model_lora_keys(model, key_map={}):
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
key_map[lora_key] = k

return key_map

#Locon stuff
ds_counter = 0
counter = 0
for b in range(12):
tk = "diffusion_model.input_blocks.{}.0".format(b)
key_in = False
for c in LORA_UNET_MAP_RESNET:
k = "{}.{}.weight".format(tk, c)
if k in sdk:
lora_key = "lora_unet_down_blocks_{}_{}".format(counter // 2, LORA_UNET_MAP_RESNET[c].format(counter % 2))
key_map[lora_key] = k
key_in = True
for bb in range(3):
k = "{}.{}.op.weight".format(tk[:-2], bb)
if k in sdk:
lora_key = "lora_unet_down_blocks_{}_downsamplers_0_conv".format(ds_counter)
key_map[lora_key] = k
ds_counter += 1
if key_in:
counter += 1

counter = 0
for b in range(3):
tk = "diffusion_model.middle_block.{}".format(b)
key_in = False
for c in LORA_UNET_MAP_RESNET:
k = "{}.{}.weight".format(tk, c)
if k in sdk:
lora_key = "lora_unet_mid_block_{}".format(LORA_UNET_MAP_RESNET[c].format(counter))
key_map[lora_key] = k
key_in = True
if key_in:
counter += 1

counter = 0
us_counter = 0
for b in range(12):
tk = "diffusion_model.output_blocks.{}.0".format(b)
key_in = False
for c in LORA_UNET_MAP_RESNET:
k = "{}.{}.weight".format(tk, c)
if k in sdk:
lora_key = "lora_unet_up_blocks_{}_{}".format(counter // 3, LORA_UNET_MAP_RESNET[c].format(counter % 3))
key_map[lora_key] = k
key_in = True
for bb in range(3):
k = "{}.{}.conv.weight".format(tk[:-2], bb)
if k in sdk:
lora_key = "lora_unet_up_blocks_{}_upsamplers_0_conv".format(us_counter)
key_map[lora_key] = k
us_counter += 1
if key_in:
counter += 1
def model_lora_keys_unet(model, key_map={}):
sdk = model.state_dict().keys()

for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = k

diffusers_keys = utils.unet_to_diffusers(model.model_config.unet_config)
for k in diffusers_keys:
if k.endswith(".weight"):
key_lora = k[:-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = "diffusion_model.{}".format(diffusers_keys[k])
return key_map


class ModelPatcher:
def __init__(self, model, load_device, offload_device, size=0):
self.size = size
Expand Down Expand Up @@ -506,8 +401,8 @@ def unpatch_model(self):
self.backup = {}

def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
key_map = model_lora_keys(model.model)
key_map = model_lora_keys(clip.cond_stage_model, key_map)
key_map = model_lora_keys_unet(model.model)
key_map = model_lora_keys_clip(clip.cond_stage_model, key_map)
loaded = load_lora(lora, key_map)
new_modelpatcher = model.clone()
k = new_modelpatcher.add_patches(loaded, strength_model)
Expand Down
117 changes: 117 additions & 0 deletions comfy/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,123 @@ def transformers_convert(sd, prefix_from, prefix_to, number):
sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
return sd

UNET_MAP_ATTENTIONS = {
"proj_in.weight",
"proj_in.bias",
"proj_out.weight",
"proj_out.bias",
"norm.weight",
"norm.bias",
}

TRANSFORMER_BLOCKS = {
"norm1.weight",
"norm1.bias",
"norm2.weight",
"norm2.bias",
"norm3.weight",
"norm3.bias",
"attn1.to_q.weight",
"attn1.to_k.weight",
"attn1.to_v.weight",
"attn1.to_out.0.weight",
"attn1.to_out.0.bias",
"attn2.to_q.weight",
"attn2.to_k.weight",
"attn2.to_v.weight",
"attn2.to_out.0.weight",
"attn2.to_out.0.bias",
"ff.net.0.proj.weight",
"ff.net.0.proj.bias",
"ff.net.2.weight",
"ff.net.2.bias",
}

UNET_MAP_RESNET = {
"in_layers.2.weight": "conv1.weight",
"in_layers.2.bias": "conv1.bias",
"emb_layers.1.weight": "time_emb_proj.weight",
"emb_layers.1.bias": "time_emb_proj.bias",
"out_layers.3.weight": "conv2.weight",
"out_layers.3.bias": "conv2.bias",
"skip_connection.weight": "conv_shortcut.weight",
"skip_connection.bias": "conv_shortcut.bias",
"in_layers.0.weight": "norm1.weight",
"in_layers.0.bias": "norm1.bias",
"out_layers.0.weight": "norm2.weight",
"out_layers.0.bias": "norm2.bias",
}

def unet_to_diffusers(unet_config):
num_res_blocks = unet_config["num_res_blocks"]
attention_resolutions = unet_config["attention_resolutions"]
channel_mult = unet_config["channel_mult"]
transformer_depth = unet_config["transformer_depth"]
num_blocks = len(channel_mult)
if not isinstance(num_res_blocks, list):
num_res_blocks = [num_res_blocks] * num_blocks

transformers_per_layer = []
res = 1
for i in range(num_blocks):
transformers = 0
if res in attention_resolutions:
transformers = transformer_depth[i]
transformers_per_layer.append(transformers)
res *= 2

transformers_mid = unet_config.get("transformer_depth_middle", transformers_per_layer[-1])

diffusers_unet_map = {}
for x in range(num_blocks):
n = 1 + (num_res_blocks[x] + 1) * x
for i in range(num_res_blocks[x]):
for b in UNET_MAP_RESNET:
diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
if transformers_per_layer[x] > 0:
for b in UNET_MAP_ATTENTIONS:
diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
for t in range(transformers_per_layer[x]):
for b in TRANSFORMER_BLOCKS:
diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
n += 1
for k in ["weight", "bias"]:
diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k)

i = 0
for b in UNET_MAP_ATTENTIONS:
diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b)
for t in range(transformers_mid):
for b in TRANSFORMER_BLOCKS:
diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b)

for i, n in enumerate([0, 2]):
for b in UNET_MAP_RESNET:
diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)

num_res_blocks = list(reversed(num_res_blocks))
transformers_per_layer = list(reversed(transformers_per_layer))
for x in range(num_blocks):
n = (num_res_blocks[x] + 1) * x
l = num_res_blocks[x] + 1
for i in range(l):
c = 0
for b in UNET_MAP_RESNET:
diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
c += 1
if transformers_per_layer[x] > 0:
c += 1
for b in UNET_MAP_ATTENTIONS:
diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
for t in range(transformers_per_layer[x]):
for b in TRANSFORMER_BLOCKS:
diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
if i == l - 1:
for k in ["weight", "bias"]:
diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k)
n += 1
return diffusers_unet_map

def convert_sd_to(state_dict, dtype):
keys = list(state_dict.keys())
for k in keys:
Expand Down

0 comments on commit acf9519

Please sign in to comment.