forked from comfyanonymous/ComfyUI
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'comfyanonymous:master' into socketrework
- Loading branch information
Showing
7 changed files
with
305 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
#taken from https://github.com/TencentARC/T2I-Adapter | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from ldm.modules.attention import SpatialTransformer, BasicTransformerBlock | ||
|
||
def conv_nd(dims, *args, **kwargs): | ||
""" | ||
Create a 1D, 2D, or 3D convolution module. | ||
""" | ||
if dims == 1: | ||
return nn.Conv1d(*args, **kwargs) | ||
elif dims == 2: | ||
return nn.Conv2d(*args, **kwargs) | ||
elif dims == 3: | ||
return nn.Conv3d(*args, **kwargs) | ||
raise ValueError(f"unsupported dimensions: {dims}") | ||
|
||
def avg_pool_nd(dims, *args, **kwargs): | ||
""" | ||
Create a 1D, 2D, or 3D average pooling module. | ||
""" | ||
if dims == 1: | ||
return nn.AvgPool1d(*args, **kwargs) | ||
elif dims == 2: | ||
return nn.AvgPool2d(*args, **kwargs) | ||
elif dims == 3: | ||
return nn.AvgPool3d(*args, **kwargs) | ||
raise ValueError(f"unsupported dimensions: {dims}") | ||
|
||
class Downsample(nn.Module): | ||
""" | ||
A downsampling layer with an optional convolution. | ||
:param channels: channels in the inputs and outputs. | ||
:param use_conv: a bool determining if a convolution is applied. | ||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | ||
downsampling occurs in the inner-two dimensions. | ||
""" | ||
|
||
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): | ||
super().__init__() | ||
self.channels = channels | ||
self.out_channels = out_channels or channels | ||
self.use_conv = use_conv | ||
self.dims = dims | ||
stride = 2 if dims != 3 else (1, 2, 2) | ||
if use_conv: | ||
self.op = conv_nd( | ||
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding | ||
) | ||
else: | ||
assert self.channels == self.out_channels | ||
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | ||
|
||
def forward(self, x): | ||
assert x.shape[1] == self.channels | ||
return self.op(x) | ||
|
||
|
||
class ResnetBlock(nn.Module): | ||
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): | ||
super().__init__() | ||
ps = ksize//2 | ||
if in_c != out_c or sk==False: | ||
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) | ||
else: | ||
# print('n_in') | ||
self.in_conv = None | ||
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) | ||
self.act = nn.ReLU() | ||
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) | ||
if sk==False: | ||
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) | ||
else: | ||
self.skep = None | ||
|
||
self.down = down | ||
if self.down == True: | ||
self.down_opt = Downsample(in_c, use_conv=use_conv) | ||
|
||
def forward(self, x): | ||
if self.down == True: | ||
x = self.down_opt(x) | ||
if self.in_conv is not None: # edit | ||
x = self.in_conv(x) | ||
|
||
h = self.block1(x) | ||
h = self.act(h) | ||
h = self.block2(h) | ||
if self.skep is not None: | ||
return h + self.skep(x) | ||
else: | ||
return h + x | ||
|
||
|
||
class Adapter(nn.Module): | ||
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True): | ||
super(Adapter, self).__init__() | ||
self.unshuffle = nn.PixelUnshuffle(8) | ||
self.channels = channels | ||
self.nums_rb = nums_rb | ||
self.body = [] | ||
for i in range(len(channels)): | ||
for j in range(nums_rb): | ||
if (i!=0) and (j==0): | ||
self.body.append(ResnetBlock(channels[i-1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv)) | ||
else: | ||
self.body.append(ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv)) | ||
self.body = nn.ModuleList(self.body) | ||
self.conv_in = nn.Conv2d(cin,channels[0], 3, 1, 1) | ||
|
||
def forward(self, x): | ||
# unshuffle | ||
x = self.unshuffle(x) | ||
# extract features | ||
features = [] | ||
x = self.conv_in(x) | ||
for i in range(len(self.channels)): | ||
for j in range(self.nums_rb): | ||
idx = i*self.nums_rb +j | ||
x = self.body[idx](x) | ||
features.append(x) | ||
|
||
return features |
Empty file.
Oops, something went wrong.