Skip to content

Commit

Permalink
Add TwirledSliceSpan
Browse files Browse the repository at this point in the history
  • Loading branch information
ihincks committed Nov 1, 2024
1 parent 3a69811 commit 1ac2698
Show file tree
Hide file tree
Showing 6 changed files with 241 additions and 7 deletions.
2 changes: 2 additions & 0 deletions qiskit_ibm_runtime/execution_span/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,9 +35,11 @@
ExecutionSpans
ShapeType
SliceSpan
TwirledSliceSpan
"""

from .double_slice_span import DoubleSliceSpan
from .execution_span import ExecutionSpan, ShapeType
from .execution_spans import ExecutionSpans
from .slice_span import SliceSpan
from .twirled_slice_span import TwirledSliceSpan
12 changes: 6 additions & 6 deletions qiskit_ibm_runtime/execution_span/double_slice_span.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,16 +28,16 @@ class DoubleSliceSpan(ExecutionSpan):
"""An :class:`~.ExecutionSpan` for data stored in a sliceable format.
This type of execution span references pub result data by assuming that it is a sliceable
portion of the data where the shots are the outermost slice and the rest of the data is flattened.
Therefore, for each pub dependent on this span, the constructor accepts two :class:`slice` objects,
along with the corresponding shape of the data to be sliced; in contrast to
:class:`~.SliceSpan`, this class does not assume that *all* shots for a particular set of parameter
values are contiguous in the array of data.
portion of the data where the shots are the outermost slice and the rest of the data is
flattened. Therefore, for each pub dependent on this span, the constructor accepts two
:class:`slice` objects, along with the corresponding shape of the data to be sliced; in contrast
to :class:`~.SliceSpan`, this class does not assume that *all* shots for a particular set of
parameter values are contiguous in the array of data.
Args:
start: The start time of the span, in UTC.
stop: The stop time of the span, in UTC.
data_slices: A map from pub indices to ``(shape_tuple, slice, slice)``.
data_slices: A map from pub indices to ``(shape_tuple, flat_shape_slice, shots_slice)``.
"""

def __init__(
Expand Down
88 changes: 88 additions & 0 deletions qiskit_ibm_runtime/execution_span/twirled_slice_span.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
# This code is part of Qiskit.
#
# (C) Copyright IBM 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""TwirledSliceSpan"""

from __future__ import annotations

from datetime import datetime
from typing import Iterable

import math
import numpy as np
import numpy.typing as npt

from .execution_span import ExecutionSpan, ShapeType


class TwirledSliceSpan(ExecutionSpan):
"""An :class:`~.ExecutionSpan` for data stored in a sliceable format when twirling.
This type of execution span references pub result data that came from a twirled sampler
experiment which was executed by either prepending or appending an axis to paramater values
to account for twirling. The value format of ``data_slices`` begins with the shape of the
parameter values accounting for twirling, and the second element indicates whether the
twirling axis is the first or the last. ``shape_slice`` and ``shots_slice`` are the same as
for :class:`~.DoubleSliceSpan`.
Args:
start: The start time of the span, in UTC.
stop: The stop time of the span, in UTC.
data_slices: A map from pub indices to
``(twirled_shape, at_front, shape_slice, shots_slice)``.
"""

def __init__(
self,
start: datetime,
stop: datetime,
data_slices: dict[int, tuple[ShapeType, bool, slice, slice]],
):
super().__init__(start, stop)
self._data_slices = data_slices

def __eq__(self, other: object) -> bool:
return isinstance(other, TwirledSliceSpan) and (
self.start == other.start
and self.stop == other.stop
and self._data_slices == other._data_slices
)

@property
def pub_idxs(self) -> list[int]:
return sorted(self._data_slices)

@property
def size(self) -> int:
size = 0
for shape, _, shape_sl, shots_sl in self._data_slices.values():
size += len(range(math.prod(shape[:-1]))[shape_sl]) * len(range(shape[-1])[shots_sl])
return size

def mask(self, pub_idx: int) -> npt.NDArray[np.bool_]:
twirled_shape, at_front, shape_sl, shots_sl = self._data_slices[pub_idx]
mask = np.zeros(twirled_shape, dtype=np.bool_)
mask.reshape(np.prod(twirled_shape[:-1]), twirled_shape[-1])[(shape_sl, shots_sl)] = True

if at_front:
# if the first axis is over twirling samples, push them right before shots
ndim = len(twirled_shape)
mask = mask.transpose(*range(1, ndim - 1), 0, ndim - 1)
twirled_shape = twirled_shape[1:-1] + twirled_shape[:1] + twirled_shape[-1:]

# merge twirling axis and shots axis before returning
return mask.reshape(*twirled_shape[:-2], math.prod(twirled_shape[-2:]))

def filter_by_pub(self, pub_idx: int | Iterable[int]) -> "TwirledSliceSpan":
pub_idx = {pub_idx} if isinstance(pub_idx, int) else set(pub_idx)
slices = {idx: val for idx, val in self._data_slices.items() if idx in pub_idx}
return TwirledSliceSpan(self.start, self.stop, slices)
18 changes: 18 additions & 0 deletions qiskit_ibm_runtime/utils/json.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,7 @@
DoubleSliceSpan,
SliceSpan,
ExecutionSpans,
TwirledSliceSpan,
)

from .noise_learner_result import NoiseLearnerResult
Expand Down Expand Up @@ -341,6 +342,16 @@ def default(self, obj: Any) -> Any: # pylint: disable=arguments-differ
},
}
return {"__type__": "DoubleSliceSpan", "__value__": out_val}
if isinstance(obj, TwirledSliceSpan):
out_val = {
"start": obj.start,
"stop": obj.stop,
"data_slices": {
idx: (shape, at_front, arg_sl.start, arg_sl.stop, shot_sl.start, shot_sl.stop)
for idx, (shape, at_front, arg_sl, shot_sl) in obj._data_slices.items()
},
}
return {"__type__": "TwirledSliceSpan", "__value__": out_val}
if isinstance(obj, SliceSpan):
out_val = {
"start": obj.start,
Expand Down Expand Up @@ -470,6 +481,13 @@ def object_hook(self, obj: Any) -> Any:
for idx, (shape, arg0, arg1, shot0, shot1) in obj_val["data_slices"].items()
}
return DoubleSliceSpan(**obj_val)
if obj_type == "TwirledSliceSpan":
data_slices = obj_val["data_slices"]
obj_val["data_slices"] = {
int(idx): (tuple(shape), at_start, slice(arg0, arg1), slice(shot0, shot1))
for idx, (shape, at_start, arg0, arg1, shot0, shot1) in data_slices.items()
}
return TwirledSliceSpan(**obj_val)
if obj_type == "ExecutionSpan":
new_slices = {
int(idx): (tuple(shape), slice(*sl_args))
Expand Down
9 changes: 9 additions & 0 deletions test/unit/test_data_serialization.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@
DoubleSliceSpan,
SliceSpan,
ExecutionSpans,
TwirledSliceSpan,
)

from .mock.fake_runtime_client import CustomResultRuntimeJob
Expand Down Expand Up @@ -468,6 +469,14 @@ def make_test_primitive_results(self):
datetime(2024, 8, 21),
{0: ((14,), slice(2, 3), slice(1, 9))},
),
TwirledSliceSpan(
datetime(2024, 9, 20),
datetime(2024, 3, 21),
{
0: ((14, 18, 21), True, slice(2, 3), slice(1, 9)),
2: ((18, 14, 19), False, slice(2, 3), slice(1, 9)),
},
),
]
)
}
Expand Down
119 changes: 118 additions & 1 deletion test/unit/test_execution_span.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,12 @@

import numpy as np
import numpy.testing as npt
from qiskit_ibm_runtime.execution_span import SliceSpan, DoubleSliceSpan, ExecutionSpans
from qiskit_ibm_runtime.execution_span import (
SliceSpan,
DoubleSliceSpan,
ExecutionSpans,
TwirledSliceSpan,
)

from ..ibm_test_case import IBMTestCase

Expand Down Expand Up @@ -222,6 +227,118 @@ def test_filter_by_pub(self):
)


@ddt.ddt
class TestTwirledSliceSpan(IBMTestCase):
"""Class for testing TwirledSliceSpan."""

def setUp(self) -> None:
super().setUp()
self.start1 = datetime(2024, 10, 11, 4, 31, 30)
self.stop1 = datetime(2024, 10, 11, 4, 31, 34)
self.slices1 = {
2: ((3, 1, 5), True, slice(1), slice(2, 4)),
0: ((3, 5, 18, 10), False, slice(10, 13), slice(2, 5)),
}
self.span1 = TwirledSliceSpan(self.start1, self.stop1, self.slices1)

self.start2 = datetime(2024, 10, 16, 11, 9, 20)
self.stop2 = datetime(2024, 10, 16, 11, 9, 30)
self.slices2 = {
0: ((7, 5, 100), True, slice(3, 5), slice(20, 40)),
1: ((1, 5, 2, 3), False, slice(3, 9), slice(1, 3)),
}
self.span2 = TwirledSliceSpan(self.start2, self.stop2, self.slices2)

def test_limits(self):
"""Test the start and stop properties"""
self.assertEqual(self.span1.start, self.start1)
self.assertEqual(self.span1.stop, self.stop1)
self.assertEqual(self.span2.start, self.start2)
self.assertEqual(self.span2.stop, self.stop2)

def test_equality(self):
"""Test the equality method."""
self.assertEqual(self.span1, self.span1)
self.assertEqual(self.span1, TwirledSliceSpan(self.start1, self.stop1, self.slices1))
self.assertNotEqual(self.span1, "aoeu")
self.assertNotEqual(self.span1, self.span2)

def test_duration(self):
"""Test the duration property"""
self.assertEqual(self.span1.duration, 4)
self.assertEqual(self.span2.duration, 10)

def test_repr(self):
"""Test the repr method"""
expect = "start='2024-10-11 04:31:30', stop='2024-10-11 04:31:34', size=14"
self.assertEqual(repr(self.span1), f"TwirledSliceSpan(<{expect}>)")

def test_size(self):
"""Test the size property"""
self.assertEqual(self.span1.size, 1 * 2 + 3 * 3)
self.assertEqual(self.span2.size, 2 * 20 + 6 * 2)

def test_pub_idxs(self):
"""Test the pub_idxs property"""
self.assertEqual(self.span1.pub_idxs, [0, 2])
self.assertEqual(self.span2.pub_idxs, [0, 1])

def test_mask(self):
"""Test the mask() method"""
# reminder: ((3, 1, 5), True, slice(1), slice(2, 4))
mask1 = np.zeros((3, 1, 5), dtype=bool)
mask1.reshape(3, 5)[:1, 2:4] = True
mask1 = mask1.transpose(1, 0, 2).reshape(1, 15)
npt.assert_array_equal(self.span1.mask(2), mask1)

# reminder: ((1, 5, 2, 3), False, slice(3,9), slice(1, 3)),
mask2 = [
[
[[[0, 0, 0], [0, 0, 0]]],
[[[0, 0, 0], [0, 1, 1]]],
[[[0, 1, 1], [0, 1, 1]]],
[[[0, 1, 1], [0, 1, 1]]],
[[[0, 1, 1], [0, 0, 0]]],
]
]
mask2 = np.array(mask2, dtype=bool).reshape(1, 5, 6)
npt.assert_array_equal(self.span2.mask(1), mask2)

@ddt.data(
(0, True, True),
([0, 1], True, True),
([0, 1, 2], True, True),
([1, 2], True, True),
([1], False, True),
(2, True, False),
([0, 2], True, True),
)
@ddt.unpack
def test_contains_pub(self, idx, span1_expected_res, span2_expected_res):
"""The the contains_pub method"""
self.assertEqual(self.span1.contains_pub(idx), span1_expected_res)
self.assertEqual(self.span2.contains_pub(idx), span2_expected_res)

def test_filter_by_pub(self):
"""The the filter_by_pub method"""
self.assertEqual(
self.span1.filter_by_pub([]), TwirledSliceSpan(self.start1, self.stop1, {})
)
self.assertEqual(
self.span2.filter_by_pub([]), TwirledSliceSpan(self.start2, self.stop2, {})
)

self.assertEqual(
self.span1.filter_by_pub([1, 0]),
TwirledSliceSpan(self.start1, self.stop1, {0: self.slices1[0]}),
)

self.assertEqual(
self.span1.filter_by_pub(2),
TwirledSliceSpan(self.start1, self.stop1, {2: self.slices1[2]}),
)


@ddt.ddt
class TestExecutionSpans(IBMTestCase):
"""Class for testing ExecutionSpans."""
Expand Down

0 comments on commit 1ac2698

Please sign in to comment.