Visual anomaly detection is critical in industrial manufacturing, but traditional methods often rely on extensive normal datasets and custom models, limiting scalability. Recent advancements in large-scale visual-language models have significantly improved zero/few-shot anomaly detection. However, these approaches may not fully utilize hierarchical features, potentially missing nuanced details. We introduce a window self-attention mechanism based on the CLIP model, combined with learnable prompts to process multi-level features within a Soldier-Offier Window selfAttention (SOWA) framework. Our method has been tested on five benchmark datasets, demonstrating superior performance by leading in 18 out of 20 metrics compared to existing state-of-the-art techniques.
# clone project
git clone https://github.com/huzongxiang/sowa
cd sowa
# [OPTIONAL] create conda environment
conda create -n sowa python=3.9
conda activate sowa
# install pytorch according to instructions
# https://pytorch.org/get-started/
# install requirements
pip install -r requirements.txt
# clone project
git clone https://github.com/huzongxiang/sowa
cd sowa
# create conda environment and install dependencies
conda env create -f environment.yaml -n sowa
# activate conda environment
conda activate sowa
Process the downloaded data using data scripts, specifying the data set location in the configuration file sowa_mvt.yaml
_target_: src.data.anomaly_clip_datamodule.AnomalyCLIPDataModule
data_dir:
train: /home/hzx/Projects/Data/Visa
valid: /home/hzx/Projects/Data/MVTec-AD
test: /home/hzx/Projects/Data/MVTec-AD
Train model with default configuration
# train on mvtec
python src/train.py trainer=gpu data=sowa_mvt model=sowa_hfwa
# train on visa
python src/train.py trainer=gpu data=sowa_visa model=sowa_hfwa
Weights can be downloaded from Huggingface Project or Baidu Cloud
# eval on visa
python src/eval.py trainer=gpu data=sowa_visa model=sowa_hfwa ckpt_path=your_mvtec_ckpt model.k_shot=true data.dataset.kshot.k_shot=4
# eval on mvt
python src/eval.py trainer=gpu data=sowa_mvt model=sowa_hfwa ckpt_path=your_visa_ckpt model.k_shot=true data.dataset.kshot.k_shot=4
Comparisons with few-shot (K=4) anomaly detection methods on datasets of MVTec-AD, Visa, BTAD, DAGM and DTD Synthetic.
Metric | Dataset | WinCLIP | April-GAN | Ours |
---|---|---|---|---|
AC AUROC | MVTec-AD | 95.2±1.3 | 92.8±0.2 | 96.8±0.3 |
Visa | 87.3±1.8 | 92.6±0.4 | 92.9±0.2 | |
BTAD | 87.0±0.2 | 92.1±0.2 | 94.8±0.2 | |
DAGM | 93.8±0.2 | 96.2±1.1 | 98.9±0.3 | |
DTD-Synthetic | 98.1±0.2 | 98.5±0.1 | 99.1±0.0 | |
AC AP | MVTec-AD | 97.3±0.6 | 96.3±0.1 | 98.3±0.3 |
Visa | 88.8±1.8 | 94.5±0.3 | 94.5±0.2 | |
BTAD | 86.8±0.0 | 95.2±0.5 | 95.5±0.7 | |
DAGM | 83.8±1.1 | 86.7±4.5 | 95.2±1.7 | |
DTD-Synthetic | 99.1±0.1 | 99.4±0.0 | 99.6±0.0 | |
AS AUROC | MVTec-AD | 96.2±0.3 | 95.9±0.0 | 95.7±0.1 |
Visa | 97.2±0.2 | 96.2±0.0 | 97.1±0.0 | |
BTAD | 95.8±0.0 | 94.4±0.1 | 97.1±0.0 | |
DAGM | 93.8±0.1 | 88.9±0.4 | 96.9±0.0 | |
DTD-Synthetic | 96.8±0.2 | 96.7±0.0 | 98.7±0.0 | |
AS AUPRO | MVTec-AD | 89.0±0.8 | 91.8±0.1 | 92.4±0.2 |
Visa | 87.6±0.9 | 90.2±0.1 | 91.4±0.0 | |
BTAD | 66.6±0.2 | 78.2±0.1 | 81.2±0.2 | |
DAGM | 82.4±0.3 | 77.8±0.9 | 94.4±0.1 | |
DTD-Synthetic | 90.1±0.5 | 92.2±0.0 | 96.6±0.1 |
Performance Comparison on MVTec-AD and Visa Datasets.
Method | Source | MVTec-AD AC AUROC | MVTec-AD AS AUROC | MVTec-AD AS PRO | Visa AC AUROC | Visa AS AUROC | Visa AS PRO |
---|---|---|---|---|---|---|---|
SPADE | arXiv 2020 | 84.8±2.5 | 92.7±0.3 | 87.0±0.5 | 81.7±3.4 | 96.6±0.3 | 87.3±0.8 |
PaDiM | ICPR 2021 | 80.4±2.4 | 92.6±0.7 | 81.3±1.9 | 72.8±2.9 | 93.2±0.5 | 72.6±1.9 |
PatchCore | CVPR 2022 | 88.8±2.6 | 94.3±0.5 | 84.3±1.6 | 85.3±2.1 | 96.8±0.3 | 84.9±1.4 |
WinCLIP | CVPR 2023 | 95.2±1.3 | 96.2±0.3 | 89.0±0.8 | 87.3±1.8 | 97.2±0.2 | 87.6±0.9 |
April-GAN | CVPR 2023 VAND workshop | 92.8±0.2 | 95.9±0.0 | 91.8±0.1 | 92.6±0.4 | 96.2±0.0 | 90.2±0.1 |
PromptAD | CVPR 2024 | 96.6±0.9 | 96.5±0.2 | - | 89.1±1.7 | 97.4±0.3 | - |
InCTRL | CVPR 2024 | 94.5±1.8 | - | - | 87.7±1.9 | - | - |
SOWA | Ours | 96.8±0.3 | 95.7±0.1 | 92.4±0.2 | 92.9±0.2 | 97.1±0.0 | 91.4±0.0 |
Comparisons with few-shot anomaly detection methods on datasets of MVTec-AD, Visa, BTAD, DAGM and DTD Synthetic.
Visualization results under the few-shot setting (K=4).
Hierarchical Results on MVTec-AD Dataset. A set of images showing the real outputs of the model, illustrating how different layers (H1 to H4) process various feature modes. Each row represents a different sample, with columns showing the original image, segmentation mask, heatmap, and feature outputs from H1 to H4, and fusion.
Inference performance comparison of different methods on a single NVIDIA RTX3070 8GB GPU.
Please cite the following paper if this work helps your project:
@article{hu2024sowa,
title={SOWA: Adapting Hierarchical Frozen Window Self-Attention to Visual-Language Models for Better Anomaly Detection},
author={Hu, Zongxiang and Zhang, zhaosheng},
journal={arXiv preprint arXiv:2407.03634},
year={2024}
}
If you have any problem with this code, please feel free to contact mail [email protected] or wechat voodoozx2015.