- This is an implementation of channel pruning using the latest
torch.FX
feature. - This is also a reimplementation of the paper
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
.- A modification to random search to make the search process more stable.
- https://github.com/anonymous47823493/EagleEye
- https://github.com/IntelLabs/distiller
git clone https://github.com/hustzxd/EagleEyeEFF.git
cd EagleEyeEFF
# ./setup.sh
source setup.sh
pip install -r requirements.txt
docker build docker/ -t efftorch:torch1.10.0
docker run -itd -v [datasets]:/workspace/datasets -v [repo]:/workspace/EagleEyeEFF --gpus all --ipc=host --name efftorch [images:id]
docker exec -it [container:id] /bin/bash
./run_cli.sh examples/classifier_cifar10/prototxt/vggsmall_eagle0.9.prototxt
./run_cli.sh examples/classifier_imagenet/prototxt/resnet50_eagle0.5w0a0.prototxt
./run_cli.sh examples/classifier_imagenet/prototxt/mobilenetv1_eagle0.5w0a0.prototxt